blob: a1f7cd7eca5047dbb173140589b83426e8ade7d0 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/GLES_COMPUTE/kernels/GCBatchNormalizationLayerKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/GLES_COMPUTE/GCHelpers.h"
#include "arm_compute/core/GLES_COMPUTE/GCKernelLibrary.h"
#include "arm_compute/core/GLES_COMPUTE/IGCTensor.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "support/StringSupport.h"
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *output,
const ITensorInfo *mean, const ITensorInfo *var,
const ITensorInfo *beta, const ITensorInfo *gamma,
float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_UNUSED(epsilon);
ARM_COMPUTE_UNUSED(var);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, mean, var);
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(mean, var);
if(output->total_size() != 0)
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
if(beta != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, beta);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, beta);
}
if(gamma != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mean, gamma);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, gamma);
}
if(act_info.enabled())
{
ARM_COMPUTE_ERROR_ON(input->data_type() != DataType::F32 && input->data_type() != DataType::F16);
ARM_COMPUTE_ERROR_ON(act_info.activation() != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::RELU
&& act_info.activation() != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::BOUNDED_RELU
&& act_info.activation() != ActivationLayerInfo::ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
ARM_COMPUTE_ERROR_ON(act_info.b() > act_info.a());
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *output,
ITensorInfo *mean, ITensorInfo *var,
ITensorInfo *beta, ITensorInfo *gamma)
{
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output, input->tensor_shape(), 1, input->data_type());
unsigned int num_elems_processed_per_iteration = 1;
if(input->data_type() == DataType::F16)
{
num_elems_processed_per_iteration = 4;
}
// Configure kernel window
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
AccessWindowStatic mean_access(mean, 0, 0, mean->dimension(0) + 3, mean->dimension(1));
AccessWindowStatic var_access(var, 0, 0, var->dimension(0) + 3, var->dimension(1));
bool window_changed = false;
if(beta != nullptr)
{
AccessWindowStatic beta_access(beta, 0, 0, beta->dimension(0) + 3, beta->dimension(1));
if(gamma != nullptr)
{
AccessWindowStatic gamma_access(gamma, 0, 0, gamma->dimension(0) + 3, gamma->dimension(1));
window_changed = update_window_and_padding(win, input_access, output_access, mean_access, var_access, beta_access, gamma_access);
}
else
{
window_changed = update_window_and_padding(win, input_access, output_access, mean_access, var_access, beta_access);
}
}
else
{
if(gamma != nullptr)
{
AccessWindowStatic gamma_access(gamma, 0, 0, gamma->dimension(0) + 3, gamma->dimension(1));
window_changed = update_window_and_padding(win, input_access, output_access, mean_access, var_access, gamma_access);
}
else
{
window_changed = update_window_and_padding(win, input_access, output_access, mean_access, var_access);
}
}
output_access.set_valid_region(win, input->valid_region());
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
GCBatchNormalizationLayerKernel::GCBatchNormalizationLayerKernel()
: _input(nullptr), _output(nullptr), _mean(nullptr), _var(nullptr), _beta(nullptr), _gamma(nullptr), _epsilon(0.0f)
{
}
void GCBatchNormalizationLayerKernel::configure(const IGCTensor *input, IGCTensor *output, const IGCTensor *mean, const IGCTensor *var, const IGCTensor *beta, const IGCTensor *gamma,
float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output, mean, var);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), output->info(), mean->info(), var->info(),
(beta != nullptr) ? beta->info() : nullptr, (gamma != nullptr) ? gamma->info() : nullptr,
epsilon, act_info));
_input = input;
_output = output;
_mean = mean;
_var = var;
_beta = beta;
_gamma = gamma;
_epsilon = epsilon;
// Set build options
std::set<std::string> build_opts;
std::string dt_name = (input->info()->data_type() == DataType::F32) ? "DATA_TYPE_FP32" : "DATA_TYPE_FP16";
build_opts.emplace(("#define " + dt_name));
build_opts.emplace(("#define ESPILON " + float_to_string_with_full_precision(_epsilon)));
build_opts.emplace(("#define LOCAL_SIZE_X " + support::cpp11::to_string(1)));
build_opts.emplace(("#define LOCAL_SIZE_Y " + support::cpp11::to_string(1)));
build_opts.emplace(("#define LOCAL_SIZE_Z " + support::cpp11::to_string(1)));
if(beta == nullptr)
{
build_opts.emplace("#define USE_DEFAULT_BETA");
}
if(gamma == nullptr)
{
build_opts.emplace("#define USE_DEFAULT_GAMMA");
}
if(act_info.enabled())
{
build_opts.emplace("#define " + string_from_activation_func(act_info.activation()));
build_opts.emplace("#define A_VAL " + float_to_string_with_full_precision(act_info.a()));
build_opts.emplace("#define B_VAL " + float_to_string_with_full_precision(act_info.b()));
}
// Create kernel
_kernel = static_cast<GCKernel>(GCKernelLibrary::get().create_kernel("batchnormalization_layer", build_opts));
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), output->info(), mean->info(), var->info(),
(beta != nullptr) ? beta->info() : nullptr, (gamma != nullptr) ? gamma->info() : nullptr);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
IGCKernel::configure(win_config.second);
}
Status GCBatchNormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *output,
const ITensorInfo *mean, const ITensorInfo *var,
const ITensorInfo *beta, const ITensorInfo *gamma,
float epsilon, ActivationLayerInfo act_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, output, mean, var, beta, gamma, epsilon, act_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), output->clone().get(),
mean->clone().get(), var->clone().get(),
beta->clone().get(), gamma->clone().get())
.first);
return Status{};
}
void GCBatchNormalizationLayerKernel::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(IKernel::window(), window);
_kernel.use();
_output->set_needs_shifting(true);
Window slice = window.first_slice_window_3D();
Window slice_in = window.first_slice_window_3D();
Window vector_slice = window.first_slice_window_1D();
vector_slice.set(Window::DimX, Window::Dimension(0, 0, 0));
unsigned int idx = 2 * num_arguments_per_3D_tensor();
unsigned int binding_point = 3;
add_1D_tensor_argument(idx, _mean, binding_point, vector_slice);
add_1D_tensor_argument(idx, _var, ++binding_point, vector_slice);
if(_beta != nullptr)
{
add_1D_tensor_argument(idx, _beta, ++binding_point, vector_slice);
}
if(_gamma != nullptr)
{
add_1D_tensor_argument(idx, _gamma, ++binding_point, vector_slice);
}
slice.shift(Window::DimX, -(_output->info()->padding()).left);
do
{
idx = 0;
add_3D_tensor_argument(idx, _input, 1, slice_in);
add_3D_tensor_argument(idx, _output, 2, slice);
_kernel.update_shader_params();
enqueue(*this, slice);
}
while(window.slide_window_slice_3D(slice) && window.slide_window_slice_3D(slice_in));
}