blob: bacf07fb4b27ad8abb76ffa7bfc5812965668438 [file] [log] [blame]
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/kernels/ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/AccessWindowStatic.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
#include <tuple>
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
using namespace misc::shape_calculator;
namespace
{
using ElementsProcessed = Steps;
Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
if(src0->data_type() == DataType::QASYMM8)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, src1);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::QASYMM8, DataType::QSYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL);
}
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src0->num_dimensions() > 4, "The number of dimensions for the LHS matrix must be <= 4");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->num_dimensions() > 3, "The number of dimensions for the RHS matrix must be <= 3");
const GEMMRHSMatrixInfo rhs_info = gemm_info.rhs_info;
const GEMMLHSMatrixInfo lhs_info = gemm_info.lhs_info;
const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
ARM_COMPUTE_RETURN_ERROR_ON_MSG((((rhs_info.k0 & (rhs_info.k0 - 1)) && rhs_info.k0 != 3) || (rhs_info.k0 > 16)), "Only 2,3,4,8,16 are supported for k0");
ARM_COMPUTE_RETURN_ERROR_ON(lhs_info.m0 < 1 || lhs_info.m0 > 8);
ARM_COMPUTE_RETURN_ERROR_ON_MSG((((rhs_info.n0 & (rhs_info.n0 - 1)) && rhs_info.n0 != 3) || rhs_info.n0 > 16), "Only 2,3,4,8,16 are supported for n0");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(rhs_info.export_to_cl_image, "Export to CLImage not supported for quantized GEMM");
const int m = gemm_info.m;
const int n = gemm_info.n;
const int k = gemm_info.k;
TensorShape tensor_shape1{ src1->tensor_shape() };
tensor_shape1.set(0, n);
tensor_shape1.set(1, k);
const TensorInfo tensor_info1 = src1->clone()->set_tensor_shape(tensor_shape1);
const TensorInfo tensor_info_reshaped1 = src1->clone()->set_tensor_shape(compute_rhs_reshaped_shape(tensor_info1, rhs_info));
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(0) != static_cast<unsigned int>(k));
if(gemm_info.reinterpret_input_as_3d)
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) * src0->dimension(2) != static_cast<unsigned int>(m));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(src0->dimension(1) != static_cast<unsigned int>(m));
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src1, &tensor_info_reshaped1);
const TensorShape expected_dst_shape = compute_mm_shape(*src0, *src1, gemm_info);
if(dst->total_size() != 0)
{
const TensorInfo tensor_info_dst = dst->clone()->set_tensor_shape(expected_dst_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(dst, &tensor_info_dst);
if(output_stage.type == GEMMLowpOutputStageType::NONE)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src0, dst);
}
}
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != bias->dimension(0));
}
ARM_COMPUTE_RETURN_ERROR_ON_MSG((output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN) || (output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FLOAT),
"Only GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT is supported");
// Checks performed if the dst stage needs to be fused
if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
// If a_offset == 0, vector_sum_col can be a nullptr
if(gemm_info.a_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != expected_dst_shape[0]);
}
// If b_offset == 0, vector_sum_row can be a nullptr
if(gemm_info.b_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
// Check if mm result is a 3D reinterpretation
const bool reinterpret_as_3d = expected_dst_shape.num_dimensions() > 1 && expected_dst_shape.y() != vector_sum_row->tensor_shape().x();
// Validate input
ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (expected_dst_shape[1] * expected_dst_shape[2]));
ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != expected_dst_shape[1]);
if(expected_dst_shape.num_dimensions() > 1)
{
const unsigned int dst_batch_idx = reinterpret_as_3d ? 3 : 2;
TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
vector_sum_row_shape.collapse_from(1);
TensorShape collapsed_dst_shape(expected_dst_shape);
collapsed_dst_shape.collapse_from(dst_batch_idx);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != collapsed_dst_shape[dst_batch_idx],
"vector_sum_row must have the same number of batches of dst tensor");
if(gemm_info.a_offset != 0)
{
TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
vector_sum_col_shape.collapse_from(1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
"vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
}
}
}
if(dst->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.output_data_type != dst->data_type());
}
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
if(output_multipliers != nullptr && output_shifts != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);
if(output_stage.is_quantized_per_channel)
{
ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != output_shifts->dimension(0));
ARM_COMPUTE_RETURN_ERROR_ON(expected_dst_shape[0] != output_multipliers->dimension(0));
}
}
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, ITensorInfo *bias,
ITensorInfo *output_multipliers, ITensorInfo *output_shifts, ElementsProcessed &num_elements_processed)
{
const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
bool reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d;
bool reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d != 0);
Window win{};
Window win_out{};
bool window_changed = false;
// In case both input and dst have to be reinterpreted as 3D tensors,
// force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
if(reinterpret_input_as_3d == reinterpret_output_as_3d)
{
reinterpret_output_as_3d = false;
}
// dst tensor auto initialization if not yet initialized
const TensorShape expected_dst_shape = compute_mm_shape(*src0, *src1, gemm_info);
if(output_stage.type != GEMMLowpOutputStageType::NONE)
{
auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(expected_dst_shape).set_data_type(output_stage.output_data_type));
}
else
{
auto_init_if_empty(*dst, src0->clone()->set_tensor_shape(expected_dst_shape).set_data_type(DataType::S32));
}
TensorInfo tmp_info(*dst);
if(reinterpret_output_as_3d)
{
// Since the dst tensor has to be reinterpreted as 3D and the execute window is based on a 2D GEMM,
// the window needs to be constructed on the 2D collapsed version of the tensor
TensorShape tmp_shape(dst->tensor_shape());
tmp_shape.collapse(2U, 1U);
tmp_info.set_tensor_shape(tmp_shape);
}
// Configure kernel window
num_elems_processed_per_iteration_x = gemm_info.rhs_info.n0;
num_elems_processed_per_iteration_y = gemm_info.lhs_info.m0;
win = calculate_max_window(tmp_info, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
win_out = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
if(gemm_info.a_offset != 0)
{
AccessWindowHorizontal vector_sum_col_access(vector_sum_col, 0, num_elems_processed_per_iteration_x);
window_changed = window_changed || update_window_and_padding(win_out, vector_sum_col_access);
}
// No access window needed for vector_sum_row
ARM_COMPUTE_UNUSED(vector_sum_row);
if(bias != nullptr)
{
AccessWindowHorizontal bias_access(bias, 0, num_elems_processed_per_iteration_x);
window_changed = window_changed || update_window_and_padding(win_out, bias_access);
}
if(output_multipliers != nullptr && output_stage.is_quantized_per_channel)
{
AccessWindowHorizontal output_multipliers_access(output_multipliers, 0, num_elems_processed_per_iteration_x);
AccessWindowHorizontal output_shifts_access(output_shifts, 0, num_elems_processed_per_iteration_x);
window_changed = window_changed || update_window_and_padding(win_out, output_multipliers_access, output_shifts_access);
}
}
// Collapse along the Z direction
// This collapse needs to be here in order to tune the Z dimension of LWS
Window collapsed = win;
const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(dst->num_dimensions()), 2u);
collapsed = win.collapse(win, dimension_to_collapse);
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, collapsed);
}
} // namespace
ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel()
{
_type = CLKernelType::GEMM;
}
void ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::configure(const CLCompileContext &compile_context, const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst,
const GEMMKernelInfo &gemm_info,
ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, ITensorInfo *bias,
ITensorInfo *output_multipliers, ITensorInfo *output_shifts)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts));
auto padding_info = get_padding_info({ src0, src1, dst, vector_sum_row });
const GEMMRHSMatrixInfo rhs_info = gemm_info.rhs_info;
const GEMMLHSMatrixInfo lhs_info = gemm_info.lhs_info;
const GEMMLowpOutputStageInfo output_stage = gemm_info.output_stage;
const int32_t a_offset = gemm_info.a_offset;
const int32_t b_offset = gemm_info.b_offset;
_reinterpret_input_as_3d = gemm_info.reinterpret_input_as_3d;
_reinterpret_output_as_3d = (gemm_info.depth_output_gemm3d != 0);
_use_dummy_work_items = preferred_dummy_work_items_support(CLKernelLibrary::get().get_device());
_is_quantized_per_channel = output_stage.is_quantized_per_channel;
// In case both input and dst have to be reinterpreted as 3D tensors,
// force reinterpret_input_as_3d and reinterpret_output_as_3d to be false.
if(_reinterpret_input_as_3d == _reinterpret_output_as_3d)
{
_reinterpret_input_as_3d = false;
_reinterpret_output_as_3d = false;
}
// Check if we need to slide the matrix B
const unsigned int num_dimensions_src0 = src0->num_dimensions();
_slide_matrix_b = (src1->num_dimensions() >= num_dimensions_src0);
ElementsProcessed num_elements_processed{};
// Configure kernel window
auto win_config = validate_and_configure_window(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts, num_elements_processed);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure_internal(win_config.second);
// If _reinterpret_input_as_3d = _reinterpret_output_as_3d = true,
// we will dispatch a batched-GEMM to reduce the complexity of the address calculation within the OpenCL kernel.
// This means that the actual m used by the kernel is given by dst->dimension(1) and not by gemm_info.m
const unsigned int internal_m = _reinterpret_output_as_3d ? gemm_info.m : dst->dimension(1);
// Shrink M0 to be always <= M (internal_m) to prevent out-of-bounds reads.
// NOTE: This might have implications on heuristics and performance
const unsigned int internal_m0 = std::min(internal_m, lhs_info.m0);
// Calculate partial (store instead of load) M0 and partial N0 for the partial blocks at the end of a row/column if any. This is to avoid padding.
const unsigned int partial_store_m0 = internal_m % internal_m0;
const unsigned int partial_store_n0 = gemm_info.n % rhs_info.n0;
// Create build options
CLBuildOptions build_opts;
build_opts.add_option_if(_reinterpret_input_as_3d, "-DREINTERPRET_INPUT_AS_3D");
build_opts.add_option_if(_reinterpret_output_as_3d, "-DREINTERPRET_OUTPUT_AS_3D");
build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DHEIGHT_GEMM3D=" + support::cpp11::to_string(dst->dimension(1)));
build_opts.add_option_if(_reinterpret_input_as_3d || _reinterpret_output_as_3d, "-DDEPTH_GEMM3D=" + support::cpp11::to_string(dst->dimension(2)));
build_opts.add_option_if(!_slide_matrix_b, "-DMATRIX_B_DEPTH=" + support::cpp11::to_string(src1->dimension(2)));
build_opts.add_option_if(rhs_info.interleave, "-DRHS_INTERLEAVE");
build_opts.add_option_if(_use_dummy_work_items, "-DDUMMY_WORK_ITEMS");
build_opts.add_option("-DM=" + support::cpp11::to_string(internal_m));
build_opts.add_option("-DN=" + support::cpp11::to_string(gemm_info.n));
build_opts.add_option("-DK=" + support::cpp11::to_string(gemm_info.k));
build_opts.add_option("-DM0=" + support::cpp11::to_string(internal_m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(rhs_info.n0));
build_opts.add_option("-DK0=" + support::cpp11::to_string(rhs_info.k0));
build_opts.add_option("-DH0=" + support::cpp11::to_string(rhs_info.h0));
build_opts.add_option("-DPARTIAL_STORE_M0=" + support::cpp11::to_string(partial_store_m0));
build_opts.add_option("-DPARTIAL_STORE_N0=" + support::cpp11::to_string(partial_store_n0));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(src0->data_type()));
build_opts.add_option("-DACC_DATA_TYPE=" + get_cl_dot8_acc_type_from_data_type(src0->data_type()));
std::string kernel_name("gemmlowp_mm_reshaped_only_rhs_");
kernel_name += rhs_info.transpose ? "t" : "nt";
if(output_stage.type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
kernel_name += "_fused_output_stage_fixedpoint";
_fuse_output_stage = true;
// If a_offset == 0, vector_sum_col can be a nullptr
if(a_offset != 0 && vector_sum_col != nullptr)
{
build_opts.add_option("-DA_OFFSET=" + support::cpp11::to_string(a_offset));
build_opts.add_option_if(vector_sum_col->tensor_shape().num_dimensions() > 1, "-DSUM_COL_HAS_BATCHES");
}
// If b_offset == 0, vector_sum_row can be a nullptr
build_opts.add_option_if(b_offset != 0, "-DB_OFFSET=" + support::cpp11::to_string(b_offset));
build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(a_offset * b_offset * src0->dimension(0)));
build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(output_stage.gemmlowp_offset));
build_opts.add_option("-DRESULT_MULTIPLIER=" + support::cpp11::to_string(output_stage.gemmlowp_multipliers[0]));
build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(output_stage.gemmlowp_shifts[0]));
build_opts.add_option_if(_is_quantized_per_channel, "-DPER_CHANNEL_QUANTIZATION");
const int min = output_stage.gemmlowp_min_bound;
const int max = output_stage.gemmlowp_max_bound;
PixelValue min_val{};
PixelValue max_val{};
std::tie(min_val, max_val) = get_min_max(dst->data_type());
build_opts.add_option_if(min != min_val.get<int32_t>(), "-DMIN_BOUND=" + support::cpp11::to_string(min));
build_opts.add_option_if(max != max_val.get<int32_t>(), "-DMAX_BOUND=" + support::cpp11::to_string(max));
}
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Set config_id for enabling LWS tuning
_config_id = kernel_name;
_config_id += "_";
_config_id += dot8_supported(CLKernelLibrary::get().get_device()) ? "_dot8" : "";
_config_id += "_";
_config_id += (_reinterpret_input_as_3d ? "3di_" : "");
_config_id += (_reinterpret_output_as_3d ? "3do_" : "");
_config_id += support::cpp11::to_string(dst->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(gemm_info.k);
_config_id += "_";
_config_id += support::cpp11::to_string(dst->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(lhs_info.m0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.n0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.k0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.h0);
_config_id += "_";
_config_id += support::cpp11::to_string(rhs_info.interleave);
ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
}
Status ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, const GEMMKernelInfo &gemm_info,
const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias,
const ITensorInfo *output_multipliers, const ITensorInfo *output_shifts)
{
ElementsProcessed num_elements_processed{};
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, dst, gemm_info, vector_sum_col, vector_sum_row, bias, output_multipliers, output_shifts));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src0->clone().get(),
src1->clone().get(),
dst->clone().get(),
gemm_info,
vector_sum_col != nullptr ? vector_sum_col->clone().get() : nullptr,
vector_sum_row != nullptr ? vector_sum_row->clone().get() : nullptr,
bias != nullptr ? bias->clone().get() : nullptr,
output_multipliers != nullptr ? output_multipliers->clone().get() : nullptr,
output_shifts != nullptr ? output_shifts->clone().get() : nullptr,
num_elements_processed)
.first);
return Status{};
}
void ClGemmLowpMatrixMultiplyReshapedOnlyRhsKernel::run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
const auto src0 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_0));
const auto src1 = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC_1));
const auto bias = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_BIAS));
const auto vector_sum_col = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_COL_SUM));
const auto vector_sum_row = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_ROW_SUM));
const auto output_shifts = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SHIFTS));
const auto output_multipliers = utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_MULTIPLIERS));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
if(src1->info()->num_dimensions() < 3)
{
// The stride_z for matrix B must be zero if we do not slice
ARM_COMPUTE_ERROR_ON(src1->info()->strides_in_bytes()[3] != 0);
}
Window slice = window.first_slice_window_3D();
Window slice_matrix_b = slice;
slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
if(_reinterpret_input_as_3d)
{
// Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3;
const unsigned int total_cross_plane_pad = src0->info()->padding().top + src0->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
if(_reinterpret_output_as_3d)
{
// Pass bottom paddings to the kernel if the dst has to be reinterpreted as 3D tensor
const unsigned int idx0 = 3 * num_arguments_per_2D_tensor() + 3 + (_reinterpret_input_as_3d ? 1 : 0);
const unsigned int total_cross_plane_pad = dst->info()->padding().top + dst->info()->padding().bottom;
_kernel.setArg<cl_uint>(idx0, static_cast<unsigned int>(total_cross_plane_pad));
}
// Set window for vector_sum_col
Window win_vector_sum_col = slice;
win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
// Set window for vector_sum_row
Window win_vector_sum_row = slice;
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
Window biases_slice = slice;
biases_slice.set(Window::DimY, Window::Dimension(0, 1, 1));
biases_slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
do
{
Window slice_b = slice;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the matrix multiplication is used to perform a convolution operation
if(!_slide_matrix_b)
{
slice_b = slice_matrix_b;
}
unsigned int idx = 0;
add_2D_tensor_argument(idx, src0, slice);
add_2D_tensor_argument(idx, src1, slice_b);
add_2D_tensor_argument(idx, dst, slice);
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src0->info()->strides_in_bytes()[2]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(src1->info()->strides_in_bytes()[2]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(dst->info()->strides_in_bytes()[2]));
if(_reinterpret_input_as_3d)
{
// Pass bottom paddings to the kernel if the input has to be reinterpreted as 3D tensor
idx++;
}
if(_reinterpret_output_as_3d)
{
// Pass bottom paddings to the kernel if the dst has to be reinterpreted as 3D tensor
idx++;
}
if(_fuse_output_stage)
{
add_2D_tensor_argument_if((vector_sum_col != nullptr), idx, vector_sum_col, win_vector_sum_col);
add_2D_tensor_argument_if((vector_sum_row != nullptr), idx, vector_sum_row, win_vector_sum_row);
add_1D_tensor_argument_if((bias != nullptr), idx, bias, biases_slice);
add_1D_tensor_argument_if(_is_quantized_per_channel, idx, output_multipliers, biases_slice);
add_1D_tensor_argument_if(_is_quantized_per_channel, idx, output_shifts, biases_slice);
}
enqueue(queue, *this, slice, lws_hint(), _use_dummy_work_items);
}
while(window.slide_window_slice_3D(slice));
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute