blob: bba09175cae0b9409340b181c7a07f855def951c [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_TEST_TENSOR_OPERATIONS_H__
#define __ARM_COMPUTE_TEST_TENSOR_OPERATIONS_H__
#include "arm_compute/core/FixedPoint.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Types.h"
#include "support/ToolchainSupport.h"
#include "tests/Types.h"
#include "tests/Utils.h"
#include "tests/validation_old/FixedPoint.h"
#include "tests/validation_old/Tensor.h"
#include "tests/validation_old/ValidationUserConfiguration.h"
#include "tests/validation_old/half.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <random>
#include <string>
#include <vector>
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace tensor_operations
{
namespace
{
template <class T>
struct is_floating_point
: std::integral_constant < bool,
std::is_same<float, typename std::remove_cv<T>::type>::value || std::is_same<half_float::half, typename std::remove_cv<T>::type>::value
|| std::is_same<double, typename std::remove_cv<T>::type>::value || std::is_same<long double, typename std::remove_cv<T>::type>::value >
{
};
// Return a tensor element at a specified coordinate with different border modes
template <typename T>
T tensor_elem_at(const Tensor<T> &in, Coordinates coord, BorderMode border_mode, T constant_border_value)
{
const int x = coord.x();
const int y = coord.y();
const int width = static_cast<int>(in.shape().x());
const int height = static_cast<int>(in.shape().y());
// If coordinates beyond range of tensor's width or height
if(x < 0 || y < 0 || x >= width || y >= height)
{
if(border_mode == BorderMode::REPLICATE)
{
coord.set(0, std::max(0, std::min(x, width - 1)));
coord.set(1, std::max(0, std::min(y, height - 1)));
}
else
{
return constant_border_value;
}
}
return in[coord2index(in.shape(), coord)];
}
/** Apply 2D spatial filter on a single element of @p in at coordinates @p coord
*
* - filter sizes have to be odd number
* - Row major order of filter assumed
* - TO_ZERO rounding policy assumed
* - SATURATE convert policy assumed
*
*/
template <typename T1, typename T2, typename T3>
void apply_2d_spatial_filter(Coordinates coord, const Tensor<T1> &in, Tensor<T3> &out, const TensorShape &filter_shape, const T2 *filter_itr, float scale, BorderMode border_mode,
T1 constant_border_value = 0)
{
double val = 0;
const int x = coord.x();
const int y = coord.y();
for(int j = y - static_cast<int>(filter_shape[1] / 2); j <= y + static_cast<int>(filter_shape[1] / 2); ++j)
{
for(int i = x - static_cast<int>(filter_shape[0] / 2); i <= x + static_cast<int>(filter_shape[0] / 2); ++i)
{
coord.set(0, i);
coord.set(1, j);
val += static_cast<double>(*filter_itr) * tensor_elem_at(in, coord, border_mode, constant_border_value);
++filter_itr;
}
}
coord.set(0, x);
coord.set(1, y);
const double rounded_val = support::cpp11::trunc(val * static_cast<double>(scale));
out[coord2index(in.shape(), coord)] = saturate_cast<T3>(rounded_val);
}
} // namespace
template <typename T>
T bilinear_policy(const Tensor<T> &in, Coordinates id, float xn, float yn, BorderMode border_mode, uint8_t constant_border_value)
{
int idx = std::floor(xn);
int idy = std::floor(yn);
const float dx = xn - idx;
const float dy = yn - idy;
const float dx_1 = 1.0f - dx;
const float dy_1 = 1.0f - dy;
id.set(0, idx);
id.set(1, idy);
const T tl = tensor_elem_at(in, id, border_mode, constant_border_value);
id.set(0, idx + 1);
id.set(1, idy);
const T tr = tensor_elem_at(in, id, border_mode, constant_border_value);
id.set(0, idx);
id.set(1, idy + 1);
const T bl = tensor_elem_at(in, id, border_mode, constant_border_value);
id.set(0, idx + 1);
id.set(1, idy + 1);
const T br = tensor_elem_at(in, id, border_mode, constant_border_value);
return tl * (dx_1 * dy_1) + tr * (dx * dy_1) + bl * (dx_1 * dy) + br * (dx * dy);
}
bool valid_bilinear_policy(float xn, float yn, int width, int height, BorderMode border_mode)
{
if(border_mode != BorderMode::UNDEFINED)
{
return true;
}
if((0 <= yn + 1) && (yn + 1 < height) && (0 <= xn + 1) && (xn + 1 < width))
{
return true;
}
return false;
}
// Sobel 3x3
template <typename T1, typename T2>
void sobel_3x3(Tensor<T1> &in, Tensor<T2> &out_x, Tensor<T2> &out_y, BorderMode border_mode, uint8_t constant_border_value)
{
const std::array<int8_t, 9> sobel_x{ { -1, 0, 1, -2, 0, 2, -1, 0, 1 } };
const std::array<int8_t, 9> sobel_y{ { -1, -2, -1, 0, 0, 0, 1, 2, 1 } };
for(int element_idx = 0; element_idx < in.num_elements(); ++element_idx)
{
const Coordinates id = index2coord(in.shape(), element_idx);
apply_2d_spatial_filter(id, in, out_x, TensorShape(3U, 3U), sobel_x.data(), 1.f, border_mode, constant_border_value);
apply_2d_spatial_filter(id, in, out_y, TensorShape(3U, 3U), sobel_y.data(), 1.f, border_mode, constant_border_value);
}
}
// Sobel 5x5
template <typename T1, typename T2>
void sobel_5x5(Tensor<T1> &in, Tensor<T2> &out_x, Tensor<T2> &out_y, BorderMode border_mode, uint8_t constant_border_value)
{
const std::array<int8_t, 25> sobel_x{ {
-1, -2, 0, 2, 1,
-4, -8, 0, 8, 4,
-6, -12, 0, 12, 6,
-4, -8, 0, 8, 4,
-1, -2, 0, 2, 1
} };
const std::array<int8_t, 25> sobel_y{ {
-1, -4, -6, -4, -1,
-2, -8, -12, -8, -2,
0, 0, 0, 0, 0,
2, 8, 12, 8, 2,
1, 4, 6, 4, 1
} };
for(int element_idx = 0; element_idx < in.num_elements(); ++element_idx)
{
const Coordinates id = index2coord(in.shape(), element_idx);
apply_2d_spatial_filter(id, in, out_x, TensorShape(5U, 5U), sobel_x.data(), 1.f, border_mode, constant_border_value);
apply_2d_spatial_filter(id, in, out_y, TensorShape(5U, 5U), sobel_y.data(), 1.f, border_mode, constant_border_value);
}
}
// Sobel 7x7
template <typename T1, typename T2>
void sobel_7x7(Tensor<T1> &in, Tensor<T2> &out_x, Tensor<T2> &out_y, BorderMode border_mode, uint8_t constant_border_value)
{
const std::array<int8_t, 49> sobel_x{ {
-1, -4, -5, 0, 5, 4, 1,
-6, -24, -30, 0, 30, 24, 6,
-15, -60, -75, 0, 75, 60, 15,
-20, -80, -100, 0, 100, 80, 20,
-15, -60, -75, 0, 75, 60, 15,
-6, -24, -30, 0, 30, 24, 6,
-1, -4, -5, 0, 5, 4, 1
} };
const std::array<int8_t, 49> sobel_y{ {
-1, -6, -15, -20, -15, -6, -1,
-4, -24, -60, -80, -60, -24, -4,
-5, -30, -75, -100, -75, -30, -5,
0, 0, 0, 0, 0, 0, 0,
5, 30, 75, 100, 75, 30, 5,
4, 24, 60, 80, 60, 24, 4,
1, 6, 15, 20, 15, 6, 1
} };
for(int element_idx = 0; element_idx < in.num_elements(); ++element_idx)
{
const Coordinates id = index2coord(in.shape(), element_idx);
apply_2d_spatial_filter(id, in, out_x, TensorShape(7U, 7U), sobel_x.data(), 1.f, border_mode, constant_border_value);
apply_2d_spatial_filter(id, in, out_y, TensorShape(7U, 7U), sobel_y.data(), 1.f, border_mode, constant_border_value);
}
}
template <typename T>
void non_maxima_suppression_3x3(Tensor<T> &in, Tensor<T> &out, BorderMode border_mode)
{
for(int i = 0; i < in.num_elements(); ++i)
{
Coordinates coord = index2coord(in.shape(), i);
int x = coord.x();
int y = coord.y();
if(in[i] >= tensor_elem_at(in, Coordinates(x - 1, y - 1), border_mode, 0.f) && in[i] >= tensor_elem_at(in, Coordinates(x, y - 1), border_mode, 0.f)
&& in[i] >= tensor_elem_at(in, Coordinates(x + 1, y - 1), border_mode, 0.f) && in[i] >= tensor_elem_at(in, Coordinates(x - 1, y), border_mode, 0.f)
&& in[i] > tensor_elem_at(in, Coordinates(x + 1, y), border_mode, 0.f) && in[i] > tensor_elem_at(in, Coordinates(x - 1, y + 1), border_mode, 0.f)
&& in[i] > tensor_elem_at(in, Coordinates(x, y + 1), border_mode, 0.f) && in[i] > tensor_elem_at(in, Coordinates(x + 1, y + 1), border_mode, 0.f))
{
out[i] = in[i];
}
else
{
out[i] = 0;
}
}
}
// Harris corners
template <typename T1, typename T2, typename T3>
void harris_corners(Tensor<T1> &in, Tensor<T2> &Gx, Tensor<T2> &Gy, Tensor<T3> &candidates, Tensor<T3> &non_maxima, float threshold, float min_dist, float sensitivity,
int32_t gradient_size, int32_t block_size, KeyPointArray &corners, BorderMode border_mode, uint8_t constant_border_value)
{
ARM_COMPUTE_ERROR_ON(block_size != 3 && block_size != 5 && block_size != 7);
ValidRegion valid_region = shape_to_valid_region(candidates.shape());
float norm_factor = 0.f;
// Sobel
switch(gradient_size)
{
case 3:
sobel_3x3(in, Gx, Gy, border_mode, constant_border_value);
norm_factor = 1.f / (4 * 255 * block_size);
break;
case 5:
sobel_5x5(in, Gx, Gy, border_mode, constant_border_value);
norm_factor = 1.f / (16 * 255 * block_size);
break;
case 7:
sobel_7x7(in, Gx, Gy, border_mode, constant_border_value);
norm_factor = 1.f / (64 * 255 * block_size);
break;
default:
ARM_COMPUTE_ERROR("Gradient size not supported.");
}
//Calculate scores
for(int i = 0; i < in.num_elements(); ++i)
{
Coordinates in_coord = index2coord(in.shape(), i);
float Gx2 = 0;
float Gy2 = 0;
float Gxy = 0;
// Calculate Gx^2, Gy^2 and Gxy within the given window
for(int y = in_coord.y() - block_size / 2; y <= in_coord.y() + block_size / 2; ++y)
{
for(int x = in_coord.x() - block_size / 2; x <= in_coord.x() + block_size / 2; ++x)
{
Coordinates block_coord(x, y);
float norm_gx = tensor_elem_at(Gx, block_coord, border_mode, static_cast<T2>(constant_border_value)) * norm_factor;
float norm_gy = tensor_elem_at(Gy, block_coord, border_mode, static_cast<T2>(constant_border_value)) * norm_factor;
Gx2 += std::pow(norm_gx, 2);
Gy2 += std::pow(norm_gy, 2);
Gxy += norm_gx * norm_gy;
}
}
float trace2 = std::pow(Gx2 + Gy2, 2);
float det = Gx2 * Gy2 - std::pow(Gxy, 2);
float response = det - sensitivity * trace2;
if(response > threshold)
{
candidates[i] = response;
}
else
{
candidates[i] = 0.f;
}
}
// Update valid region and remove candidates on borders for border_mode == UNDEFINED
if(border_mode == BorderMode::UNDEFINED)
{
valid_region = shape_to_valid_region(candidates.shape(), true, BorderSize((gradient_size / 2) + (block_size / 2)));
for(int i = 0; i < candidates.num_elements(); ++i)
{
if(!is_in_valid_region(valid_region, index2coord(candidates.shape(), i)))
{
candidates[i] = 0.f;
}
}
}
// Suppress non-maxima candidates
non_maxima_suppression_3x3(candidates, non_maxima, border_mode != BorderMode::UNDEFINED ? BorderMode::CONSTANT : BorderMode::UNDEFINED);
if(border_mode == BorderMode::UNDEFINED)
{
valid_region = shape_to_valid_region(non_maxima.shape(), true, BorderSize((gradient_size / 2) + (block_size / 2) + 1));
}
// Create vector of candidate corners
KeyPointArray candidates_vector(corners.max_num_values());
for(int i = 0; i < non_maxima.num_elements(); ++i)
{
Coordinates coord = index2coord(non_maxima.shape(), i);
if(non_maxima[i] != 0.f && is_in_valid_region(valid_region, coord))
{
KeyPoint corner;
corner.x = coord.x();
corner.y = coord.y();
corner.tracking_status = 1;
corner.strength = non_maxima[i];
corner.scale = 0.f;
corner.orientation = 0.f;
corner.error = 0.f;
candidates_vector.push_back(corner);
}
}
// If there are any candidates, sort them by strength and add them to the output corners vector if there are no stronger corners within the given euclidean radius
if(candidates_vector.num_values() > 0)
{
std::sort(candidates_vector.buffer(), candidates_vector.buffer() + candidates_vector.num_values(), [](KeyPoint a, KeyPoint b)
{
return a.strength > b.strength;
});
corners.push_back(candidates_vector.at(0));
for(size_t j = 0; j < candidates_vector.num_values(); ++j)
{
bool found = false;
int32_t x = candidates_vector.at(j).x;
int32_t y = candidates_vector.at(j).y;
for(size_t i = 0; i < corners.num_values(); ++i)
{
int32_t corners_x = corners.at(i).x;
int32_t corners_y = corners.at(i).y;
// Euclidean distance
if(std::sqrt((std::pow(x - corners_x, 2) + std::pow(y - corners_y, 2))) < min_dist)
{
found = true;
}
}
// If no stronger corners within the given euclidean radius
if(!found)
{
corners.push_back(candidates_vector.at(j));
}
}
}
}
// Integral Image
void integral_image(const Tensor<uint8_t> &in, Tensor<uint32_t> &out)
{
// Length of dimensions
const size_t width = in.shape().x();
const size_t height = in.shape().y();
const size_t depth = in.shape().z() * in.shape()[3] * in.shape()[4] * in.shape()[5];
const size_t image_size = width * height;
for(size_t z = 0; z < depth; ++z)
{
size_t current_image = z * image_size;
//First element of each image
out[current_image] = in[current_image];
// First row of each image (add only pixel on the left)
for(size_t x = 1; x < width; ++x)
{
out[current_image + x] = static_cast<uint32_t>(in[current_image + x]) + out[current_image + x - 1];
}
// Subsequent rows
for(size_t y = 1; y < height; ++y)
{
size_t current_row = current_image + (width * y);
// First element of each row (add only pixel up)
out[current_row] = static_cast<uint32_t>(in[current_row]) + out[current_row - width];
// Following row elements
for(size_t x = 1; x < width; ++x)
{
size_t current_pixel = current_row + x;
// out = in + up(out) + left(out) - up_left(out)
out[current_pixel] = static_cast<uint32_t>(in[current_pixel]) + out[current_pixel - 1]
+ out[current_pixel - width] - out[current_pixel - width - 1];
}
}
}
}
// Absolute difference
template <typename T1, typename T2, typename T3>
void absolute_difference(const Tensor<T1> &in1, const Tensor<T2> &in2, Tensor<T3> &out)
{
using intermediate_type = typename common_promoted_signed_type<T1, T2, T3>::intermediate_type;
for(int i = 0; i < in1.num_elements(); ++i)
{
intermediate_type val(std::abs(static_cast<intermediate_type>(in1[i]) - static_cast<intermediate_type>(in2[i])));
out[i] = saturate_cast<T3>(val);
}
}
// Accumulate
template <typename T1, typename T2>
void accumulate(const Tensor<T1> &in, Tensor<T2> &out)
{
using intermediate_type = typename common_promoted_signed_type<T1, T2>::intermediate_type;
for(int i = 0; i < in.num_elements(); ++i)
{
intermediate_type val = static_cast<intermediate_type>(out[i]) + static_cast<intermediate_type>(in[i]);
out[i] = saturate_cast<T2>(val);
}
}
// Accumulate squared
template <typename T1, typename T2>
void accumulate_squared(const Tensor<T1> &in, Tensor<T2> &out, uint32_t shift)
{
if(shift > 15)
{
ARM_COMPUTE_ERROR("Shift in accumulate_squared must be within the range [0, 15]");
}
using intermediate_type = typename common_promoted_signed_type<T1, T2>::intermediate_type;
intermediate_type denom = 1 << shift;
for(int i = 0; i < in.num_elements(); ++i)
{
intermediate_type val = static_cast<intermediate_type>(out[i]) + (static_cast<intermediate_type>(in[i]) * static_cast<intermediate_type>(in[i]) / denom);
out[i] = saturate_cast<T2>(val);
}
}
// Accumulate weighted total_size = init_auto_padding(tensor_shape, num_channels, type);
template <typename T>
void accumulate_weighted(const Tensor<T> &in, Tensor<T> &out, float alpha)
{
if(alpha < 0.f || alpha > 1.f)
{
ARM_COMPUTE_ERROR("Weight (alpha) specified in accumulate_weighted must be within the range [0, 1]");
}
using intermediate_type = typename common_promoted_signed_type<T>::intermediate_type;
for(int i = 0; i < in.num_elements(); ++i)
{
double val = (1. - static_cast<double>(alpha)) * static_cast<intermediate_type>(out[i]) + static_cast<double>(alpha) * static_cast<intermediate_type>(in[i]);
out[i] = static_cast<T>(val);
}
}
// Non linear filter
template <typename T>
void non_linear_filter(const Tensor<T> &in, Tensor<T> &out, NonLinearFilterFunction function, unsigned int mask_size,
MatrixPattern pattern, const uint8_t *mask, BorderMode border_mode, uint8_t constant_border_value)
{
ARM_COMPUTE_ERROR_ON(pattern == MatrixPattern::OTHER && mask == nullptr);
using intermediate_type = typename common_promoted_signed_type<T>::intermediate_type;
const int sq_mask_size = mask_size * mask_size;
const int half_mask_size = mask_size / 2;
std::vector<intermediate_type> vals(sq_mask_size);
intermediate_type current_value = 0;
const ValidRegion valid_region = shape_to_valid_region(in.shape(), border_mode == BorderMode::UNDEFINED, BorderSize(half_mask_size));
for(int element_idx = 0, count = 0, index = 0; element_idx < in.num_elements(); ++element_idx, count = 0, index = 0)
{
Coordinates id = index2coord(in.shape(), element_idx);
if(is_in_valid_region(valid_region, id))
{
int idx = id.x();
int idy = id.y();
for(int y = idy - half_mask_size; y <= idy + half_mask_size; ++y)
{
for(int x = idx - half_mask_size; x <= idx + half_mask_size; ++x, ++index)
{
id.set(0, x);
id.set(1, y);
current_value = tensor_elem_at(in, id, border_mode, constant_border_value);
if(mask[index] == 255)
{
vals[count] = static_cast<intermediate_type>(current_value);
++count;
}
}
}
std::sort(vals.begin(), vals.begin() + count);
switch(function)
{
case NonLinearFilterFunction::MIN:
out[element_idx] = saturate_cast<T>(vals[0]);
break;
case NonLinearFilterFunction::MAX:
out[element_idx] = saturate_cast<T>(vals[count - 1]);
break;
case NonLinearFilterFunction::MEDIAN:
out[element_idx] = saturate_cast<T>(vals[count / 2]);
break;
default:
ARM_COMPUTE_ERROR("Unsupported NonLinearFilter function.");
}
}
}
}
// Pixel-wise multiplication
template <typename T1, typename T2, typename T3>
void pixel_wise_multiplication(const Tensor<T1> &in1, const Tensor<T2> &in2, Tensor<T3> &out, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
{
if(scale < 0)
{
ARM_COMPUTE_ERROR("Scale of pixel-wise multiplication must be non-negative");
}
using intermediate_type = typename common_promoted_signed_type<T1, T2, T3>::intermediate_type;
for(int i = 0; i < in1.num_elements(); ++i)
{
double val = static_cast<intermediate_type>(in1[i]) * static_cast<intermediate_type>(in2[i]) * static_cast<double>(scale);
if(is_floating_point<T3>::value)
{
out[i] = val;
}
else
{
double rounded_val = 0;
switch(rounding_policy)
{
case(RoundingPolicy::TO_ZERO):
rounded_val = support::cpp11::trunc(val);
break;
case(RoundingPolicy::TO_NEAREST_UP):
rounded_val = round_half_up(val);
break;
case(RoundingPolicy::TO_NEAREST_EVEN):
rounded_val = round_half_even(val);
break;
default:
ARM_COMPUTE_ERROR("Unsupported rounding policy");
}
out[i] = (convert_policy == ConvertPolicy::SATURATE) ? saturate_cast<T3>(rounded_val) : static_cast<T3>(rounded_val);
}
}
}
// Fixed-point Pixel-wise Multiplication
template <typename T, typename = typename std::enable_if<std::is_integral<T>::value>::type>
void fixed_point_pixel_wise_multiplication(const Tensor<T> &in1, const Tensor<T> &in2, Tensor<T> &out, float scale, ConvertPolicy convert_policy, RoundingPolicy rounding_policy)
{
using namespace fixed_point_arithmetic;
const int fixed_point_position = in1.fixed_point_position();
ARM_COMPUTE_ERROR_ON_MSG(in1.data_type() != in2.data_type() || in1.data_type() != out.data_type(),
"Tensors must all have the same DataType");
ARM_COMPUTE_ERROR_ON_MSG(fixed_point_position != in2.fixed_point_position() || fixed_point_position != out.fixed_point_position(),
"Fixed-point position must be the same for both inputs and outputs");
// Validate fixed_point_position
ARM_COMPUTE_ERROR_ON((in1.data_type() == DataType::QS8) && (fixed_point_position == 0 || fixed_point_position > 7));
ARM_COMPUTE_ERROR_ON((in1.data_type() == DataType::QS16) && (fixed_point_position == 0 || fixed_point_position > 15));
const fixed_point<T> fp_scale(scale, fixed_point_position);
const bool is_sat = convert_policy == ConvertPolicy::SATURATE;
for(int i = 0; i < in1.num_elements(); ++i)
{
const fixed_point<T> val1(in1[i], fixed_point_position, true);
fixed_point<T> res(in2[i], fixed_point_position, true);
if(is_sat)
{
res = mul(mul(res, val1), fp_scale);
}
else
{
res = mul<OverflowPolicy::WRAP>(mul<OverflowPolicy::WRAP>(res, val1), fp_scale);
}
out[i] = res.raw();
}
}
// Threshold
template <typename T>
void threshold(const Tensor<T> &in, Tensor<T> &out, uint8_t threshold, uint8_t false_value, uint8_t true_value, ThresholdType type, uint8_t upper)
{
switch(type)
{
case ThresholdType::BINARY:
for(int i = 0; i < in.num_elements(); ++i)
{
out[i] = ((in[i] > threshold) ? true_value : false_value);
}
break;
case ThresholdType::RANGE:
for(int i = 0; i < in.num_elements(); ++i)
{
if(in[i] > upper)
{
out[i] = false_value;
}
else if(in[i] < threshold)
{
out[i] = false_value;
}
else
{
out[i] = true_value;
}
}
break;
default:
ARM_COMPUTE_ERROR("Thresholding type not recognised");
break;
}
}
// Warp Perspective
template <typename T>
void warp_perspective(const Tensor<T> &in, Tensor<T> &out, Tensor<T> &valid_mask, const float *matrix, InterpolationPolicy policy, BorderMode border_mode, uint8_t constant_border_value)
{
// x0 = M00 * x + M01 * y + M02
// y0 = M10 * x + M11 * y + M12
// z0 = M20 * x + M21 * y + M22
// xn = x0 / z0
// yn = y0 / z0
const float M00 = matrix[0];
const float M10 = matrix[1];
const float M20 = matrix[2];
const float M01 = matrix[0 + 1 * 3];
const float M11 = matrix[1 + 1 * 3];
const float M21 = matrix[2 + 1 * 3];
const float M02 = matrix[0 + 2 * 3];
const float M12 = matrix[1 + 2 * 3];
const float M22 = matrix[2 + 2 * 3];
const int width = in.shape().x();
const int height = in.shape().y();
for(int element_idx = 0; element_idx < in.num_elements(); ++element_idx)
{
valid_mask[element_idx] = 1;
Coordinates id = index2coord(in.shape(), element_idx);
int idx = id.x();
int idy = id.y();
const float z0 = M20 * idx + M21 * idy + M22;
float x0 = (M00 * idx + M01 * idy + M02);
float y0 = (M10 * idx + M11 * idy + M12);
float xn = x0 / z0;
float yn = y0 / z0;
id.set(0, static_cast<int>(std::floor(xn)));
id.set(1, static_cast<int>(std::floor(yn)));
if((0 <= yn) && (yn < height) && (0 <= xn) && (xn < width))
{
switch(policy)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
out[element_idx] = tensor_elem_at(in, id, border_mode, constant_border_value);
break;
case InterpolationPolicy::BILINEAR:
(valid_bilinear_policy(xn, yn, width, height, border_mode)) ? out[element_idx] = bilinear_policy(in, id, xn, yn, border_mode, constant_border_value) : valid_mask[element_idx] = 0;
break;
case InterpolationPolicy::AREA:
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
else
{
if(border_mode == BorderMode::UNDEFINED)
{
valid_mask[element_idx] = 0;
}
else
{
switch(policy)
{
case InterpolationPolicy::NEAREST_NEIGHBOR:
if(border_mode == BorderMode::CONSTANT)
{
out[element_idx] = constant_border_value;
}
else if(border_mode == BorderMode::REPLICATE)
{
id.set(0, std::max(0, std::min(static_cast<int>(xn), width - 1)));
id.set(1, std::max(0, std::min(static_cast<int>(yn), height - 1)));
out[element_idx] = in[coord2index(in.shape(), id)];
}
break;
case InterpolationPolicy::BILINEAR:
out[element_idx] = bilinear_policy(in, id, xn, yn, border_mode, constant_border_value);
break;
case InterpolationPolicy::AREA:
default:
ARM_COMPUTE_ERROR("Interpolation not supported");
}
}
}
}
}
// ROI Pooling layer
template <typename T>
void roi_pooling_layer(const Tensor<T> &in, Tensor<T> &out, const std::vector<ROI> &rois, const ROIPoolingLayerInfo &pool_info)
{
const int num_rois = rois.size();
const int width_in = in.shape().x();
const int height_in = in.shape().y();
const int fms = in.shape().z();
const int volume_in = width_in * height_in * fms;
const int pool_w = pool_info.pooled_width();
const int pool_h = pool_info.pooled_height();
const int volume_out = pool_w * pool_h * fms;
const float roi_scale = pool_info.spatial_scale();
// Iterate through all rois
for(int roi_idx = 0; roi_idx < num_rois; ++roi_idx)
{
// Get dimensions of current ROI
const ROI &roi = rois[roi_idx];
int batch_id = roi.batch_idx;
int roi_start_x = support::cpp11::round(roi.rect.x * roi_scale);
int roi_start_y = support::cpp11::round(roi.rect.y * roi_scale);
int roi_width = std::max(support::cpp11::round(roi.rect.width * roi_scale), 1.f);
int roi_height = std::max(support::cpp11::round(roi.rect.height * roi_scale), 1.f);
// Iterate through all channel
for(int fm = 0; fm < fms; ++fm)
{
// Calculate each output pixel
for(int py = 0; py < pool_h; ++py)
{
for(int px = 0; px < pool_w; ++px)
{
int region_start_x = static_cast<int>(std::floor((static_cast<float>(px) / pool_w) * roi_width));
int region_end_x = static_cast<int>(std::floor((static_cast<float>(px + 1) / pool_w) * roi_width));
int region_start_y = static_cast<int>(std::floor((static_cast<float>(py) / pool_h) * roi_height));
int region_end_y = static_cast<int>(std::floor((static_cast<float>(py + 1) / pool_h) * roi_height));
region_start_x = std::min(std::max(region_start_x + roi_start_x, 0), width_in);
region_end_x = std::min(std::max(region_end_x + roi_start_x, 0), width_in);
region_start_y = std::min(std::max(region_start_y + roi_start_y, 0), height_in);
region_end_y = std::min(std::max(region_end_y + roi_start_y, 0), height_in);
// Iterate through each pixel in the pooling region
if((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
{
out[roi_idx * volume_out + fm * pool_w * pool_h + py * pool_w + px] = 0;
}
else
{
T curr_max = std::numeric_limits<T>::lowest();
for(int j = region_start_y; j < region_end_y; ++j)
{
for(int i = region_start_x; i < region_end_x; ++i)
{
const auto val = in[batch_id * volume_in + fm * width_in * height_in + j * width_in + i];
curr_max = std::max(val, curr_max);
}
}
out[roi_idx * volume_out + fm * pool_w * pool_h + py * pool_w + px] = curr_max;
}
}
}
}
}
}
// Fixed point operations
template <typename T>
void fixed_point_operation(const Tensor<T> &in, Tensor<T> &out, FixedPointOp op)
{
int p = in.fixed_point_position();
switch(op)
{
case FixedPointOp::EXP:
for(int i = 0; i < in.num_elements(); ++i)
{
out[i] = fixed_point_arithmetic::exp(fixed_point_arithmetic::fixed_point<T>(in[i], p, true)).raw();
}
break;
case FixedPointOp::LOG:
for(int i = 0; i < in.num_elements(); ++i)
{
out[i] = fixed_point_arithmetic::log(fixed_point_arithmetic::fixed_point<T>(in[i], p, true)).raw();
}
break;
case FixedPointOp::INV_SQRT:
for(int i = 0; i < in.num_elements(); ++i)
{
out[i] = fixed_point_arithmetic::inv_sqrt(fixed_point_arithmetic::fixed_point<T>(in[i], p, true)).raw();
}
break;
case FixedPointOp::RECIPROCAL:
for(int i = 0; i < in.num_elements(); ++i)
{
out[i] = fixed_point_arithmetic::div(fixed_point_arithmetic::fixed_point<T>(1, p), fixed_point_arithmetic::fixed_point<T>(in[i], p, true)).raw();
}
break;
default:
ARM_COMPUTE_ERROR("Fixed point operation not supported");
break;
}
}
// Tensor print
template <typename T>
void print(const Tensor<T> &in, std::ostream &out)
{
out << "\n";
for(int i = 0; i < in.num_elements(); ++i)
{
out << in[i] << " ";
}
out << "\n";
}
} // namespace tensor_operations
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* __ARM_COMPUTE_TEST_TENSOR_OPERATIONS_H__ */