blob: ac05f23221ea00681a282bc5c8f68ad1e87405b5 [file] [log] [blame]
/*
* Copyright (c) 2022-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <algorithm>
#include <cstddef>
#include <arm_neon.h>
namespace arm_conv {
namespace winograd {
namespace output_transform {
void arm_fp32_1x4_1x5(
unsigned int n_channels,
const float* inptr,
size_t matrix_stride,
const float* bptr,
float *outptr,
size_t, // No need to stride across rows
size_t output_col_stride,
float output_min,
float output_max
)
{
constexpr auto inner_tile_cols = 8u, output_tile_cols = 4u;
// For each channel of the output
for (; n_channels >= 4; n_channels -= 4)
{
// Matrices used and computed during this transform
float32x4_t F[inner_tile_cols], f[output_tile_cols], b = vdupq_n_f32(0.0f);
// Read a 1x8 tile in the Winograd domain
for (auto j = 0u; j < inner_tile_cols; j++)
{
F[j] = vld1q_f32(inptr + j*matrix_stride);
}
inptr += 4;
f[0] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1);
f[1] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1);
f[2] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[2], 1), F[1], 1), F[6], 9), F[5], 9), F[4], 4), F[3], 4);
f[3] = vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmlaq_n_f32(vmulq_n_f32(F[7], 1), F[2], 1), F[6], 27), F[4], 8), F[3], -8), F[5], -27), F[1], -1);
// Write out the output tile
if (bptr != 0)
{
b = vld1q_f32(bptr);
bptr += 4;
}
for (auto j = 0u; j < output_tile_cols; j++)
{
const auto y =
vmaxq_f32(vminq_f32(vaddq_f32(f[j], b), vdupq_n_f32(output_max)),
vdupq_n_f32(output_min));
vst1q_f32(outptr + j*output_col_stride, y);
}
outptr += 4;
}
for (; n_channels >= 2; n_channels -= 2)
{
// Matrices used and computed during this transform
float32x2_t F[inner_tile_cols], f[output_tile_cols], b = vdup_n_f32(0.0f);
// Read a 1x8 tile in the Winograd domain
for (auto j = 0u; j < inner_tile_cols; j++)
{
F[j] = vld1_f32(inptr + j*matrix_stride);
}
inptr += 2;
f[0] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[6], 1), F[5], 1), F[4], 1), F[3], 1), F[2], 1), F[1], 1), F[0], 1);
f[1] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[6], 3), F[4], 2), F[3], -2), F[5], -3), F[1], -1);
f[2] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[2], 1), F[1], 1), F[6], 9), F[5], 9), F[4], 4), F[3], 4);
f[3] = vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmla_n_f32(vmul_n_f32(F[7], 1), F[2], 1), F[6], 27), F[4], 8), F[3], -8), F[5], -27), F[1], -1);
// Write out the output tile
if (bptr != 0)
{
b = vld1_f32(bptr);
bptr += 2;
}
for (auto j = 0u; j < output_tile_cols; j++)
{
const auto y =
vmax_f32(vmin_f32(vadd_f32(f[j], b), vdup_n_f32(output_max)),
vdup_n_f32(output_min));
vst1_f32(outptr + j*output_col_stride, y);
}
outptr += 2;
}
for (; n_channels; n_channels--)
{
// Matrices used and computed during this transform
float F[inner_tile_cols], f[output_tile_cols], b = 0.0f;
// Read a 1x8 tile in the Winograd domain
for (auto j = 0u; j < inner_tile_cols; j++)
{
F[j] = *(inptr + j*matrix_stride);
}
inptr++;
f[0] = F[0]*1 + F[1]*1 + F[2]*1 + F[3]*1 + F[4]*1 + F[5]*1 + F[6]*1;
f[1] = F[1]*-1 + F[5]*-3 + F[3]*-2 + F[4]*2 + F[6]*3 + F[2]*1;
f[2] = F[3]*4 + F[4]*4 + F[5]*9 + F[6]*9 + F[1]*1 + F[2]*1;
f[3] = F[1]*-1 + F[5]*-27 + F[3]*-8 + F[4]*8 + F[6]*27 + F[2]*1 + F[7]*1;
// Write out the output tile
if (bptr != 0)
{
b = *(bptr++);
}
for (auto j = 0u; j < output_tile_cols; j++)
{
const auto y = std::max(std::min(f[j] + b, output_max), output_min);
*(outptr + j*output_col_stride) = y;
}
outptr++;
}
}
} // namespace output_transform
} // namespace winograd
} // namespace arm_conv