blob: 28f042bcbf8689a130267feb99c53a6a6ec7ea2c [file] [log] [blame]
/*
* Copyright (c) 2022, 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <algorithm>
#include <cstddef>
#include <arm_neon.h>
namespace arm_conv {
namespace winograd {
namespace output_transform {
void arm_fp32_2x2_3x3(
unsigned int n_channels,
const float* inptr,
size_t matrix_stride,
const float* bptr,
float *outptr,
size_t output_row_stride,
size_t output_col_stride,
float output_min,
float output_max
)
{
constexpr auto output_tile_rows = 2u, output_tile_cols = 2u;
// For each channel of the output
for (; n_channels >= 4; n_channels -= 4)
{
// Matrices used and computed during this transform
float32x4_t F[4][4], FZ[4][2], f[2][2], b;
// Read a 4x4 tile in the Winograd domain
for (auto i = 0u, m = 0u; i < 4; i++)
{
for (auto j = 0u; j < 4; j++, m++)
{
F[i][j] = vld1q_f32(inptr + m*matrix_stride);
}
}
inptr += 4;
// Compute the matrix F Z
for (auto i = 0u; i < 4; i++)
{
// FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
FZ[i][0] = vaddq_f32(vaddq_f32(F[i][0], F[i][1]), F[i][2]);
// FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
FZ[i][1] = vsubq_f32(vsubq_f32(F[i][1], F[i][2]), F[i][3]);
}
// Compute the output tile f = ZT F Z
for (auto j = 0u; j < 2; j++)
{
// f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
f[0][j] = vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
// f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
f[1][j] = vsubq_f32(vsubq_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
}
// Load the bias vector
if (bptr != nullptr)
{
b = vld1q_f32(bptr);
bptr += 4;
}
else
{
b = vdupq_n_f32(0.0f);
}
// Write out the output tile
for (auto i = 0u; i < output_tile_rows; i++)
{
for (auto j = 0u; j < output_tile_cols; j++)
{
const auto y =
vmaxq_f32(vminq_f32(vaddq_f32(f[i][j], b), vdupq_n_f32(output_max)),
vdupq_n_f32(output_min));
vst1q_f32(outptr + i*output_row_stride + j*output_col_stride, y);
}
}
outptr += 4;
}
for (; n_channels >= 2; n_channels -= 2)
{
// Matrices used and computed during this transform
float32x2_t F[4][4], FZ[4][2], f[2][2], b;
// Read a 4x4 tile in the Winograd domain
for (auto i = 0u, m = 0u; i < 4; i++)
{
for (auto j = 0u; j < 4; j++, m++)
{
F[i][j] = vld1_f32(inptr + m*matrix_stride);
}
}
inptr += 2;
// Compute the matrix F Z
for (auto i = 0u; i < 4; i++)
{
// FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
FZ[i][0] = vadd_f32(vadd_f32(F[i][0], F[i][1]), F[i][2]);
// FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
FZ[i][1] = vsub_f32(vsub_f32(F[i][1], F[i][2]), F[i][3]);
}
// Compute the output tile f = ZT F Z
for (auto j = 0u; j < 2; j++)
{
// f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
f[0][j] = vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
// f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
f[1][j] = vsub_f32(vsub_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
}
// Load the bias vector
if (bptr != nullptr)
{
b = vld1_f32(bptr);
bptr += 2;
}
else
{
b = vdup_n_f32(0.0f);
}
// Write out the output tile
for (auto i = 0u; i < output_tile_rows; i++)
{
for (auto j = 0u; j < output_tile_cols; j++)
{
const auto y =
vmax_f32(vmin_f32(vadd_f32(f[i][j], b), vdup_n_f32(output_max)),
vdup_n_f32(output_min));
vst1_f32(outptr + i*output_row_stride + j*output_col_stride, y);
}
}
outptr += 2;
}
for (; n_channels; n_channels--)
{
// Matrices used and computed during this transform
float F[4][4], FZ[4][2], f[2][2], b;
// Read a 4x4 tile in the Winograd domain
for (auto i = 0u, m = 0u; i < 4; i++)
{
for (auto j = 0u; j < 4; j++, m++)
{
F[i][j] = *(inptr + m*matrix_stride);
}
}
inptr++;
// Compute the matrix F Z
for (auto i = 0u; i < 4; i++)
{
FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
}
// Compute the output tile f = ZT F Z
for (auto j = 0u; j < 2; j++)
{
f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
}
// Load the bias
if (bptr != nullptr)
{
b = *(bptr++);
}
else
{
b = 0.0f;
}
// Write out the output tile
for (auto i = 0u; i < output_tile_rows; i++)
{
for (auto j = 0u; j < output_tile_cols; j++)
{
const auto y = std::max(std::min(f[i][j] + b, output_max), output_min);
*(outptr + i*output_row_stride + j*output_col_stride) = y;
}
}
outptr++;
}
}
} // namespace output_transform
} // namespace winograd
} // namespace arm_conv