blob: 01f5de47cf4a3b4d48c3ce5fb64f34b0e1067306 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#if defined(DATA_TYPE) && defined(MIN_VALUE) && defined(VECTOR_SIZE) && defined(VECTOR_SIZE_LEFTOVER)
/** Divides all the values of the input tensor by the sum calculated from softmax_layer_shift_exp_sum kernel.
*
* @note Datatype must be given as a preprocessor argument using -DDATA_TYPE, e.g. -DDATA_TYPE=float
* @note The zero value for the given data type must be given as a preprocessor argument using -DMIN_VALUE, e.g. -DMIN_VALUE=0
* @note Vector size should be given as a preprocessor argument using -DVECTOR_SIZE=size. e.g. -DVECTOR_SIZE=16
* @note Leftover vector size has to be passed at compile time using -DVECTOR_SIZE_LEFTOVER. e.g. -DVECTOR_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VECTOR_SIZE
* @note In case of log softmax, -DLOG_SOFTMAX must be passed.
*
* @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr
* @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes)
* @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes)
* @param[in] sum_step_y sum_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes)
* @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor
* @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void softmax_layer_norm(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(sum),
TENSOR3D_DECLARATION(dst))
{
const int x_offs = max((int)(get_global_id(0) * VECTOR_SIZE - (VECTOR_SIZE - VECTOR_SIZE_LEFTOVER) % VECTOR_SIZE), 0) * sizeof(DATA_TYPE);
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offs + get_global_id(1) * src_stride_y + get_global_id(2) * src_stride_z;
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs + get_global_id(1) * dst_stride_y + get_global_id(2) * dst_stride_z;
Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(sum);
// Load max value of 1D logits vector (row)
DATA_TYPE sum_val = *((__global DATA_TYPE *)offset(&sum, 0, get_global_id(1)));
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
data0 = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)src_addr);
#if defined(LOG_SOFTMAX)
sum_val = log(sum_val);
data0 -= sum_val;
#else // defined(LOG_SOFTMAX)
data0 /= sum_val;
#endif // defined(LOG_SOFTMAX)
STORE_VECTOR_SELECT(data, DATA_TYPE, dst_addr, VECTOR_SIZE, VECTOR_SIZE_LEFTOVER, VECTOR_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
}
#if defined(SRC_WIDTH) && defined(LOG_VECTOR_SIZE) && defined(MINVAL)
/* Number of workitems in dimension 0. */
#if !defined(GRID_SIZE)
#define GRID_SIZE 1
#endif /* !defined(GRID_SIZE) */
#define VEC_TYPE VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
#define SELECT_TYPE SELECT_VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
/** Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by this maximum value,
* then gets the exponent of each element as sums all elements across each row.
*
* @note Datatype must be given as a preprocessor argument using -DDATA_TYPE, e.g. -DDATA_TYPE=float
* @note The zero value for the given data type must be given as a preprocessor argument using -DMIN_VALUE, e.g. -DMIN_VALUE=0
* @note Vector size should be given as a preprocessor argument using -DVECTOR_SIZE=size. e.g. -DVECTOR_SIZE=16
* @note Leftover vector size has to be passed at compile time using -DVECTOR_SIZE_LEFTOVER. e.g. -DVECTOR_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VECTOR_SIZE
* @note In case the input is not a multiple of VECTOR_SIZE (2,4,8,16) -DNON_MULTIPLE_OF_VECTOR_SIZE must be passed.
* @note Beta can be optionally passed at compile time using -DBETA (by default, it is 1.0).
* @note In case of log softmax, -DLOG_SOFTMAX must be passed.
* @note Based on the data type, the minimum possible value must be passed using -DMINVAL. For float it should be defined as -FLT_MAX, while for half it should be -HALF_MAX
*
* @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] maxo_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr
* @param[in] maxo_stride_x Stride of the max values tensor in X dimension (in bytes)
* @param[in] maxo_step_x max_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] maxo_stride_y Stride of the max values tensor in Y dimension (in bytes)
* @param[in] maxo_step_y max_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] maxo_stride_z Stride of the max values tensor in Z dimension (in bytes)
* @param[in] maxo_step_z max_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] maxo_offset_first_element_in_bytes The offset of the first element in the max values tensor
* @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr
* @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes)
* @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes)
* @param[in] sum_step_y sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes)
* @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor
*/
__kernel void softmax_layer_max_shift_exp_sum_serial(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(maxo),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(sum))
{
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + get_global_id(1) * src_stride_y + get_global_id(2) * src_stride_z;
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + get_global_id(1) * dst_stride_y + get_global_id(2) * dst_stride_z;
Image maxo = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(maxo);
Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(sum);
#ifdef BETA
// Initialize beta
VEC_TYPE beta = (VEC_TYPE)BETA;
#endif /* BETA */
// Initialize local maximum
VEC_TYPE max_val_vec = (VEC_TYPE)(MINVAL);
#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
VEC_TYPE data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)src_addr);
SELECT_TYPE widx = (SELECT_TYPE)VECTOR_SIZE_LEFTOVER > VEC_OFFS(SELECT_DATA_TYPE(DATA_TYPE), VECTOR_SIZE);
max_val_vec = max(max_val_vec, select((VEC_TYPE)(MINVAL), data, widx));
#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
for(uint i = VECTOR_SIZE_LEFTOVER; i < SRC_WIDTH; i += VECTOR_SIZE)
{
VEC_TYPE data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(src_addr + i * sizeof(DATA_TYPE)));
max_val_vec = max(data, max_val_vec);
}
// Perform max reduction
DATA_TYPE max_val = MAX_REDUCE(max_val_vec, VECTOR_SIZE);
*((__global DATA_TYPE *)maxo.ptr) = max_val;
/* Second section */
// Set sum vector
VEC_TYPE sum1D = 0;
#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
data -= max_val;
#ifdef BETA
data *= beta;
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE_PARTIAL(VECTOR_SIZE, VECTOR_SIZE_LEFTOVER)
(data, 0, (__global DATA_TYPE *)dst_addr);
data = exp(data);
data = select(0, data, widx);
#else /* LOG_SOFTMAX */
data = exp(data);
data = select(0, data, widx);
VSTORE_PARTIAL(VECTOR_SIZE, VECTOR_SIZE_LEFTOVER)
(data, 0, (__global DATA_TYPE *)dst_addr);
#endif /* LOG_SOFTMAX */
sum1D += data;
#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
// Shift values, exp and sum
for(uint i = VECTOR_SIZE_LEFTOVER; i < SRC_WIDTH; i += VECTOR_SIZE)
{
VEC_TYPE data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(src_addr + i * sizeof(DATA_TYPE)));
data -= max_val;
#ifdef BETA
data *= beta;
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)(dst_addr + i * sizeof(DATA_TYPE)));
data = exp(data);
#else /* LOG_SOFTMAX */
data = exp(data);
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)(dst_addr + i * sizeof(DATA_TYPE)));
#endif /* LOG_SOFTMAX */
sum1D += data;
}
// Perform sum reduction
*((__global DATA_TYPE *)sum.ptr) = SUM_REDUCE(sum1D, VECTOR_SIZE);
}
/** Identifies the maximum value across the 1st dimension and shifts the values of the input tensor by this maximum value,
* then gets the exponent of each element as sums all elements across each row.
*
* @note Datatype must be given as a preprocessor argument using -DDATA_TYPE, e.g. -DDATA_TYPE=float
* @note The zero value for the given data type must be given as a preprocessor argument using -DMIN_VALUE, e.g. -DMIN_VALUE=0
* @note Vector size should be given as a preprocessor argument using -DVECTOR_SIZE=size. e.g. -DVECTOR_SIZE=16
* @note Leftover vector size has to be passed at compile time using -DVECTOR_SIZE_LEFTOVER. e.g. -DVECTOR_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VECTOR_SIZE
* @note In case the input is not a multiple of VECTOR_SIZE (2,4,8,16) -DNON_MULTIPLE_OF_VECTOR_SIZE must be passed.
* @note Beta can be optionally passed at compile time using -DBETA (by default, it is 1.0).
* @note In case of log softmax, -DLOG_SOFTMAX must be passed.
* @note Based on the data type, the minimum possible value must be passed using -DMINVAL. For float it should be defined as -FLT_MAX, while for half it should be -HALF_MAX
*
* @param[in] src_ptr Pointer to the source tensor slice. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] maxo_ptr Pointer to the max values tensor slice. Supported data types: same as @p src_ptr
* @param[in] maxo_stride_x Stride of the max values tensor in X dimension (in bytes)
* @param[in] maxo_step_x max_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] maxo_stride_y Stride of the max values tensor in Y dimension (in bytes)
* @param[in] maxo_step_y max_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] maxo_stride_z Stride of the max values tensor in Z dimension (in bytes)
* @param[in] maxo_step_z max_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] maxo_offset_first_element_in_bytes The offset of the first element in the max values tensor
* @param[out] dst_ptr Pointer to the destination tensor slice. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[out] sum_ptr Pointer to the sum values tensor slice. Supported data types: same as @p src_ptr
* @param[in] sum_stride_x Stride of the sum values tensor in X dimension (in bytes)
* @param[in] sum_step_x sum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] sum_stride_y Stride of the sum values tensor in Y dimension (in bytes)
* @param[in] sum_step_y sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_stride_z Stride of the sum values tensor in Z dimension (in bytes)
* @param[in] sum_step_z sum_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] sum_offset_first_element_in_bytes The offset of the first element in the sum values tensor
*/
__kernel void softmax_layer_max_shift_exp_sum_parallel(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(maxo),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(sum))
{
const uint lid = get_local_id(0);
const uint x_offs = (VECTOR_SIZE_LEFTOVER + lid * VECTOR_SIZE) * sizeof(DATA_TYPE);
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offs + get_global_id(1) * src_stride_y + get_global_id(2) * src_stride_z;
__global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + x_offs + get_global_id(1) * dst_stride_y + get_global_id(2) * dst_stride_z;
Image maxo = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(maxo);
Image sum = CONVERT_TENSOR3D_TO_IMAGE_STRUCT(sum);
#ifdef BETA
// Initialize beta
VEC_TYPE beta = (VEC_TYPE)BETA;
#endif /* BETA */
// Define one temporary vector per work-item.
__local VEC_TYPE tmp_local[GRID_SIZE];
__local DATA_TYPE max_local;
VEC_TYPE max_val_vec = (VEC_TYPE)(MINVAL);
// Number of iterations per work-item.
const uint width = (SRC_WIDTH / GRID_SIZE) >> LOG_VECTOR_SIZE;
// Calculate max of row
uint i = 0;
for(; i < width; ++i)
{
VEC_TYPE data_max = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(src_addr + (i * GRID_SIZE * VECTOR_SIZE) * sizeof(DATA_TYPE)));
max_val_vec = max(data_max, max_val_vec);
}
#ifdef NON_MULTIPLE_OF_GRID_SIZE
// How many work-items needed to complete the computation.
//TODO: Optimize this calculation (avoid %).
int boundary_workitems = (SRC_WIDTH % (GRID_SIZE * VECTOR_SIZE)) / VECTOR_SIZE;
if(lid < boundary_workitems)
{
VEC_TYPE data_max = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(src_addr + (i * GRID_SIZE * VECTOR_SIZE) * sizeof(DATA_TYPE)));
max_val_vec = max(data_max, max_val_vec);
}
#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
SELECT_TYPE widx;
if(lid == 0)
{
// Handle non multiple of 4
VEC_TYPE data_max = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(src_addr - VECTOR_SIZE_LEFTOVER * sizeof(DATA_TYPE)));
widx = (SELECT_TYPE)VECTOR_SIZE_LEFTOVER > VEC_OFFS(SELECT_DATA_TYPE(DATA_TYPE), VECTOR_SIZE);
max_val_vec = max(max_val_vec, select((VEC_TYPE)(MINVAL), data_max, widx));
}
#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
#endif /* NON_MULTIPLE_OF_GRID_SIZE */
tmp_local[lid] = max_val_vec;
barrier(CLK_LOCAL_MEM_FENCE);
if(GRID_SIZE >= 256)
{
if(lid < 128)
{
tmp_local[lid] = max(tmp_local[lid + 128], tmp_local[lid]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 128)
{
if(lid < 64)
{
tmp_local[lid] = max(tmp_local[lid + 64], tmp_local[lid]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 64)
{
if(lid < 32)
{
tmp_local[lid] = max(tmp_local[lid + 32], tmp_local[lid]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 32)
{
if(lid < 16)
{
tmp_local[lid] = max(tmp_local[lid + 16], tmp_local[lid]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 16)
{
if(lid < 8)
{
tmp_local[lid] = max(tmp_local[lid + 8], tmp_local[lid]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 8)
{
if(lid < 4)
{
tmp_local[lid] = max(tmp_local[lid + 4], tmp_local[lid]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 4)
{
if(lid < 2)
{
tmp_local[lid] = max(tmp_local[lid + 2], tmp_local[lid]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(lid == 0)
{
max_val_vec = max(tmp_local[lid + 1], tmp_local[lid]);
max_local = MAX_REDUCE(max_val_vec, VECTOR_SIZE);
}
barrier(CLK_LOCAL_MEM_FENCE);
/* Second section */
// Set sum vector
VEC_TYPE sum1D = 0;
DATA_TYPE max_val = max_local;
// Shift values, exp and sum
for(i = 0; i < width; ++i)
{
VEC_TYPE data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(src_addr + (i * GRID_SIZE * VECTOR_SIZE) * sizeof(DATA_TYPE)));
data -= max_val;
#ifdef BETA
data *= beta;
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)(dst_addr + (i * GRID_SIZE * VECTOR_SIZE) * sizeof(DATA_TYPE)));
data = exp(data);
#else /* LOG_SOFTMAX */
data = exp(data);
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)(dst_addr + (i * GRID_SIZE * VECTOR_SIZE) * sizeof(DATA_TYPE)));
#endif /* LOG_SOFTMAX */
sum1D += data;
}
#ifdef NON_MULTIPLE_OF_GRID_SIZE
//TODO: Optimize the calculation (avoid %).
boundary_workitems = (SRC_WIDTH % (GRID_SIZE * VECTOR_SIZE)) / VECTOR_SIZE;
if(lid < boundary_workitems)
{
VEC_TYPE data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(__global DATA_TYPE *)(src_addr + (i * GRID_SIZE * VECTOR_SIZE) * sizeof(DATA_TYPE)));
data -= max_val;
#ifdef BETA
data *= beta;
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)(dst_addr + (i * GRID_SIZE * VECTOR_SIZE) * sizeof(DATA_TYPE)));
data = exp(data);
#else /* LOG_SOFTMAX */
data = exp(data);
VSTORE(VECTOR_SIZE)
(data, 0, (__global DATA_TYPE *)(dst_addr + (i * GRID_SIZE * VECTOR_SIZE) * sizeof(DATA_TYPE)));
#endif /* LOG_SOFTMAX */
sum1D += data;
}
#ifdef NON_MULTIPLE_OF_VECTOR_SIZE
if(lid == 0)
{
// Handle non multiple of vector size ((GRID_SIZE * i * 4) + 4, 0); move 4 float positions ahead, *4 is due to the stride
VEC_TYPE data = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)(src_addr - VECTOR_SIZE_LEFTOVER * sizeof(DATA_TYPE)));
data -= max_val;
#ifdef BETA
data *= beta;
#endif /* BETA */
#ifdef LOG_SOFTMAX
VSTORE_PARTIAL(VECTOR_SIZE, VECTOR_SIZE_LEFTOVER)
(data, 0, (__global DATA_TYPE *)(dst_addr - VECTOR_SIZE_LEFTOVER * sizeof(DATA_TYPE)));
data = exp(data);
data = select(0, data, widx);
#else /* LOG_SOFTMAX */
data = exp(data);
data = select(0, data, widx);
VSTORE_PARTIAL(VECTOR_SIZE, VECTOR_SIZE_LEFTOVER)
(data, 0, (__global DATA_TYPE *)(dst_addr - VECTOR_SIZE_LEFTOVER * sizeof(DATA_TYPE)));
#endif /* LOG_SOFTMAX */
sum1D += data;
}
#endif /* NON_MULTIPLE_OF_VECTOR_SIZE */
#endif /* NON_MULTIPLE_OF_GRID_SIZE */
tmp_local[lid] = sum1D;
barrier(CLK_LOCAL_MEM_FENCE);
if(GRID_SIZE >= 256)
{
if(lid < 128)
{
tmp_local[lid] += tmp_local[lid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 128)
{
if(lid < 64)
{
tmp_local[lid] += tmp_local[lid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 64)
{
if(lid < 32)
{
tmp_local[lid] += tmp_local[lid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 32)
{
if(lid < 16)
{
tmp_local[lid] += tmp_local[lid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 16)
{
if(lid < 8)
{
tmp_local[lid] += tmp_local[lid + 8];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 8)
{
if(lid < 4)
{
tmp_local[lid] += tmp_local[lid + 4];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(GRID_SIZE >= 4)
{
if(lid < 2)
{
tmp_local[lid] += tmp_local[lid + 2];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if(lid == 0)
{
sum1D = (tmp_local[lid + 1] + tmp_local[lid]);
// Perform sum reduction
*((__global DATA_TYPE *)sum.ptr) = SUM_REDUCE(sum1D, VECTOR_SIZE);
}
}
#endif // defined(SRC_WIDTH) && defined(LOG_VECTOR_SIZE) && defined(MINVAL)
#endif // defined(DATA_TYPE) && defined(MIN_VALUE) && defined(VECTOR_SIZE) && defined(VECTOR_SIZE_LEFTOVER)