blob: 978d3bc1a8ad34ac124dcce55d8b3ece9962e6e2 [file] [log] [blame]
/*
* Copyright (c) 2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_GRAPH_BACKENDS_DETAIL_FUNCTION_HELPERS_H__
#define __ARM_COMPUTE_GRAPH_BACKENDS_DETAIL_FUNCTION_HELPERS_H__
#include "arm_compute/graph/Logger.h"
#include "arm_compute/graph/Tensor.h"
#include "arm_compute/graph/TypePrinter.h"
#include "arm_compute/graph/Types.h"
#include "arm_compute/graph/backends/Utils.h"
#include "arm_compute/graph/nodes/Nodes.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorInfo.h"
#include "arm_compute/core/utils/misc/Cast.h"
namespace arm_compute
{
namespace graph
{
namespace backends
{
namespace detail
{
/** Returns backing tensor of a given tensor
*
* @tparam TargetInfo Target information
*
* @param[in] tensor Tensor to extract the backing tensor from
*
* @return Backing tensor if present else nullptr
*/
template <typename TargetInfo>
typename TargetInfo::TensorType *get_backing_tensor(arm_compute::graph::Tensor *tensor)
{
typename TargetInfo::TensorType *backing_tensor = nullptr;
if(tensor != nullptr)
{
ARM_COMPUTE_ERROR_ON(tensor->desc().target != TargetInfo::TargetType);
// Get backing tensor handle
ITensorHandle *tensor_handle = tensor->handle();
// Get backing tensor
backing_tensor = (tensor_handle != nullptr) ? arm_compute::utils::cast::polymorphic_cast<typename TargetInfo::TensorType *>(&tensor_handle->tensor()) : nullptr;
}
return backing_tensor;
}
template <typename TargetInfo>
void validate_node(const INode &node, size_t num_expected_inputs, size_t num_expected_outputs)
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Creating " << node.type()
<< " Target : " << TargetInfo::TargetType
<< " ID : " << node.id()
<< " Name: " << node.name()
<< std::endl);
ARM_COMPUTE_ERROR_ON(TargetInfo::TargetType != node.assigned_target());
ARM_COMPUTE_ERROR_ON(node.num_inputs() != num_expected_inputs);
ARM_COMPUTE_ERROR_ON(node.num_outputs() != num_expected_outputs);
}
/** Creates a backend activation layer function
*
* @tparam ActivationLayerFunction Backend activation function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend activation layer function
*/
template <typename ActivationLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_activation_layer(ActivationLayerNode &node)
{
validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
const ActivationLayerInfo act_info = node.activation_info();
// Create function
auto func = support::cpp14::make_unique<ActivationLayerFunction>();
func->configure(input, output, act_info);
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Shape: " << input->info()->tensor_shape()
<< " Activation function: " << act_info.activation()
<< " a: " << act_info.a()
<< " b: " << act_info.b()
<< " InPlace : " << is_in_place_operation(input, output)
<< std::endl);
return std::move(func);
}
/** Create a backend batch normalization layer function
*
* @tparam BatchNormalizationLayerFunction Backend batch normalization function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend batch normalization layer function
*/
template <typename BatchNormalizationLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_batch_normalization_layer(BatchNormalizationLayerNode &node)
{
validate_node<TargetInfo>(node, 5 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *mean = get_backing_tensor<TargetInfo>(node.input(1));
typename TargetInfo::TensorType *var = get_backing_tensor<TargetInfo>(node.input(2));
typename TargetInfo::TensorType *beta = get_backing_tensor<TargetInfo>(node.input(3));
typename TargetInfo::TensorType *gamma = get_backing_tensor<TargetInfo>(node.input(4));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
const float epsilon = node.epsilon();
const ActivationLayerInfo fused_act = node.fused_activation();
// Create and configure function
auto func = support::cpp14::make_unique<BatchNormalizationLayerFunction>();
func->configure(input, output, mean, var, beta, gamma, epsilon, fused_act);
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Shape: " << input->info()->tensor_shape()
<< " Epsilon: " << epsilon << " "
<< (fused_act.enabled() ? to_string(fused_act.activation()) : "")
<< " InPlace : " << is_in_place_operation(input, output)
<< std::endl);
return std::move(func);
}
/** Create a backend channel shuffle layer function
*
* @tparam ChannelShuffleLayerFunction Backend channel shuffle function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend channel shuffle layer function
*/
template <typename ChannelShuffleLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_channel_shuffle_layer(ChannelShuffleLayerNode &node)
{
validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
const unsigned int num_groups = node.num_groups();
// Create function
auto func = support::cpp14::make_unique<ChannelShuffleLayerFunction>();
func->configure(input, output, num_groups);
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Shape: " << input->info()->tensor_shape()
<< " Num groups: " << num_groups
<< std::endl);
return std::move(func);
}
/** Create a backend convolution layer function
*
* @tparam ConvolutionLayerFunctions Backend convolution functions
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
* @param[in] ctx Graph context
*
* @return Backend convolution layer function
*/
template <typename ConvolutionLayerFunctions, typename TargetInfo>
std::unique_ptr<IFunction> create_convolution_layer(ConvolutionLayerNode &node, GraphContext &ctx)
{
validate_node<TargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *weights = get_backing_tensor<TargetInfo>(node.input(1));
typename TargetInfo::TensorType *biases = get_backing_tensor<TargetInfo>(node.input(2));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
if(is_data_type_quantized_asymmetric(input->info()->data_type()))
{
biases->info()->set_data_type(DataType::S32);
}
const PadStrideInfo conv_info = node.convolution_info();
const ConvolutionMethod conv_algorithm = node.convolution_method();
const bool fast_math = node.fast_math_hint() == FastMathHint::ENABLED;
// Create and configure function (we assume that functions have been validated before creation)
std::shared_ptr<IMemoryManager> mm = get_memory_manager(ctx, TargetInfo::TargetType);
std::unique_ptr<IFunction> func;
std::string func_name;
if(conv_algorithm == ConvolutionMethod::WINOGRAD)
{
std::tie(func, func_name) = create_named_memory_managed_function<typename ConvolutionLayerFunctions::WinogradConvolutionLayer>(
std::string("WinogradConvolutionLayer"), mm,
input, weights, biases, output, conv_info, ActivationLayerInfo(), fast_math);
}
else if(conv_algorithm == ConvolutionMethod::DIRECT)
{
std::tie(func, func_name) = create_named_function<typename ConvolutionLayerFunctions::DirectConvolutionLayer>(
std::string("DirectConvolutionLayer"),
input, weights, biases, output, conv_info);
}
else if(conv_algorithm == ConvolutionMethod::GEMM)
{
std::tie(func, func_name) = create_named_memory_managed_function<typename ConvolutionLayerFunctions::GEMMConvolutionLayer>(
std::string("GEMMConvolutionLayer"), mm,
input, weights, biases, output, conv_info);
}
else
{
std::tie(func, func_name) = create_named_memory_managed_function<typename ConvolutionLayerFunctions::GenericConvolutionLayer>(
std::string("GenericConvolutionLayer"), mm,
input, weights, biases, output, conv_info, WeightsInfo(), Size2D(1U, 1U), ActivationLayerInfo(), fast_math);
}
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << func_name
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input QuantInfo: " << input->info()->quantization_info()
<< " Weights QuantInfo: " << weights->info()->quantization_info()
<< " Input shape: " << input->info()->tensor_shape()
<< " Weights shape: " << weights->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< std::endl);
return func;
}
/** Create a backend deconvolution layer function
*
* @tparam DeconvolutionLayerFunction Backend deconvolution function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
* @param[in] ctx Graph context
*
* @return Backend deconvolution layer function
*/
template <typename DeconvolutionLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_deconvolution_layer(DeconvolutionLayerNode &node, GraphContext &ctx)
{
validate_node<TargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *weights = get_backing_tensor<TargetInfo>(node.input(1));
typename TargetInfo::TensorType *biases = get_backing_tensor<TargetInfo>(node.input(2));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
const PadStrideInfo deconv_info = node.deconvolution_info();
const Size2D inner_border = node.inner_border();
// Create and configure function (we assume that functions have been validated before creation)
std::shared_ptr<IMemoryManager> mm = get_memory_manager(ctx, TargetInfo::TargetType);
std::unique_ptr<IFunction> func;
std::tie(func, std::ignore) = create_named_memory_managed_function<DeconvolutionLayerFunction>(
std::string(), mm,
input, weights, biases, output, deconv_info, inner_border.x(), inner_border.y());
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input shape: " << input->info()->tensor_shape()
<< " Weights shape: " << weights->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< std::endl);
return func;
}
/** Create a backend layer depth concatenate function
*
* @tparam DepthConcatenateLayerFunction Backend depth concatenate function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend depth concatenate layer function
*/
template <typename DepthConcatenateLayerFunction, typename TargetInfo>
std::unique_ptr<arm_compute::IFunction> create_depth_concatenate_layer(DepthConcatenateLayerNode &node)
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Creating DepthConcatenate node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
ARM_COMPUTE_ERROR_ON(node.num_outputs() != 1);
// Return nullptr if depth concatenate is switched off
if(!node.is_enabled())
{
return nullptr;
}
// Extract IO and info
std::vector<typename TargetInfo::TensorType *> inputs;
for(unsigned int i = 0; i < node.num_inputs(); ++i)
{
inputs.push_back(get_backing_tensor<TargetInfo>(node.input(i)));
}
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
// Create and configure function
auto func = support::cpp14::make_unique<DepthConcatenateLayerFunction>();
func->configure(inputs, output);
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << output->info()->data_type()
<< " Shape: " << output->info()->tensor_shape()
<< " Num Inputs: " << inputs.size()
<< std::endl);
return std::move(func);
}
/** Create a backend layer depth-wise convolution function
*
* @tparam DepthwiseConvolutionLayerFunctions Backend depthwise convolution function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend depth-wise convolution layer function
*/
template <typename DepthwiseConvolutionLayerFunctions, typename TargetInfo>
std::unique_ptr<IFunction> create_depthwise_convolution_layer(DepthwiseConvolutionLayerNode &node)
{
validate_node<TargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *weights = get_backing_tensor<TargetInfo>(node.input(1));
typename TargetInfo::TensorType *biases = get_backing_tensor<TargetInfo>(node.input(2));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
if(is_data_type_quantized_asymmetric(input->info()->data_type()))
{
biases->info()->set_data_type(DataType::S32);
}
const PadStrideInfo conv_info = node.convolution_info();
const DepthwiseConvolutionMethod dwc_algorithm = node.depthwise_convolution_method();
// Create and configure function (we assume that functions have been validated before creation)
std::unique_ptr<IFunction> func;
std::string func_name;
if(dwc_algorithm == DepthwiseConvolutionMethod::OPTIMIZED_3x3)
{
std::tie(func, func_name) = create_named_function<typename DepthwiseConvolutionLayerFunctions::DepthwiseConvolutionLayer3x3>(
std::string("DepthwiseConvolutionLayer3x3"),
input, weights, biases, output, conv_info);
}
else
{
std::tie(func, func_name) = create_named_function<typename DepthwiseConvolutionLayerFunctions::GenericDepthwiseConvolutionLayer>(
std::string("DepthwiseConvolutionLayer"),
input, weights, biases, output, conv_info);
}
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << func_name
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input QuantInfo: " << input->info()->quantization_info()
<< " Weights QuantInfo: " << weights->info()->quantization_info()
<< " Input shape: " << input->info()->tensor_shape()
<< " Weights shape: " << weights->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< std::endl);
return func;
}
/** Create a backend element-wise operation layer function
*
* @tparam EltwiseFunctions Backend element-wise function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend element-wise operation layer function
*/
template <typename EltwiseFunctions, typename TargetInfo>
std::unique_ptr<IFunction> create_eltwise_layer(EltwiseLayerNode &node)
{
validate_node<TargetInfo>(node, 2 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input1 = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *input2 = get_backing_tensor<TargetInfo>(node.input(1));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
const EltwiseOperation eltwise_op = node.eltwise_operation();
const ConvertPolicy convert_policy = node.convert_policy();
ARM_COMPUTE_ERROR_ON(input1 == nullptr);
ARM_COMPUTE_ERROR_ON(input2 == nullptr);
ARM_COMPUTE_ERROR_ON(output == nullptr);
std::unique_ptr<IFunction> func = nullptr;
std::string func_name;
if(eltwise_op == EltwiseOperation::ADD)
{
std::tie(func, func_name) = create_named_function<typename EltwiseFunctions::Addition>(
std::string("ArithmeticAddition"),
input1, input2, output, convert_policy);
}
else if(eltwise_op == EltwiseOperation::SUB)
{
std::tie(func, func_name) = create_named_function<typename EltwiseFunctions::Subtraction>(
std::string("ArithmeticSubtraction"),
input1, input2, output, convert_policy);
}
else if(eltwise_op == EltwiseOperation::MUL)
{
std::tie(func, func_name) = create_named_function<typename EltwiseFunctions::Multiplication>(
std::string("PixelWiseMultiplication"),
input1, input2, output, 1.f, convert_policy, node.rounding_policy());
}
else
{
ARM_COMPUTE_ERROR("Unsupported element-wise operation!");
}
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Operation " << func_name
<< " Data Type: " << input1->info()->data_type()
<< " Shape : " << input1->info()->tensor_shape()
<< std::endl);
return func;
}
/** Create a backend flatten layer function
*
* @tparam FlattenLayerFunction Backend flatten function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend flatten layer function
*/
template <typename FlattenLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_flatten_layer(FlattenLayerNode &node)
{
validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
// Create and configure function
auto func = support::cpp14::make_unique<FlattenLayerFunction>();
func->configure(input, output);
ARM_COMPUTE_ERROR_ON(input == nullptr);
ARM_COMPUTE_ERROR_ON(output == nullptr);
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input shape: " << input->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< std::endl);
return std::move(func);
}
/** Create a backend fully connected layer function
*
* @tparam FullyConnectedLayerFunction Backend fully-connected function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
* @param[in] ctx Graph context
*
* @return Backend fully connected layer function
*/
template <typename FullyConnectedLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_fully_connected_layer(FullyConnectedLayerNode &node, GraphContext &ctx)
{
validate_node<TargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *weights = get_backing_tensor<TargetInfo>(node.input(1));
typename TargetInfo::TensorType *biases = get_backing_tensor<TargetInfo>(node.input(2));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
const FullyConnectedLayerInfo fc_info = node.info();
// Create and configure function
auto func = support::cpp14::make_unique<FullyConnectedLayerFunction>(get_memory_manager(ctx, TargetInfo::TargetType));
func->configure(input, weights, biases, output, fc_info);
ARM_COMPUTE_ERROR_ON(input == nullptr);
ARM_COMPUTE_ERROR_ON(weights == nullptr);
ARM_COMPUTE_ERROR_ON(output == nullptr);
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input shape: " << input->info()->tensor_shape()
<< " Weights shape: " << weights->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< std::endl);
return std::move(func);
}
/** Create a backend normalization layer function
*
* @tparam NormalizationLayerFunction Backend normalization function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
* @param[in] ctx Graph context
*
* @return Backend normalization layer function
*/
template <typename NormalizationLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_normalization_layer(NormalizationLayerNode &node, GraphContext &ctx)
{
ARM_COMPUTE_UNUSED(ctx);
validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
const NormalizationLayerInfo norm_info = node.normalization_info();
ARM_COMPUTE_ERROR_ON(input == nullptr);
ARM_COMPUTE_ERROR_ON(output == nullptr);
// Create and configure function
auto func = support::cpp14::make_unique<NormalizationLayerFunction>();
func->configure(input, output, norm_info);
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input shape: " << input->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< " Normalization info: " << norm_info.type()
<< std::endl);
return std::move(func);
}
/** Create a backend pooling layer function
*
* @tparam PoolingLayerFunction Backend pooling function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend pooling layer function
*/
template <typename PoolingLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_pooling_layer(PoolingLayerNode &node)
{
validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
const PoolingLayerInfo pool_info = node.pooling_info();
ARM_COMPUTE_ERROR_ON(input == nullptr);
ARM_COMPUTE_ERROR_ON(output == nullptr);
// Create and configure function
auto func = support::cpp14::make_unique<PoolingLayerFunction>();
func->configure(input, output, pool_info);
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input shape: " << input->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< " Pooling info: " << pool_info.pool_type()
<< std::endl);
return std::move(func);
}
/** Create a backend reshape layer function
*
* @tparam ReshapeLayerFunction Backend reshape function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend reshape layer function
*/
template <typename ReshapeLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_reshape_layer(ReshapeLayerNode &node)
{
validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
ARM_COMPUTE_ERROR_ON(input == nullptr);
ARM_COMPUTE_ERROR_ON(output == nullptr);
// Create and configure function
auto func = support::cpp14::make_unique<ReshapeLayerFunction>();
func->configure(input, output);
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input shape: " << input->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< std::endl);
return std::move(func);
}
/** Create a backend resize layer function
*
* @tparam ResizeLayerFunction Backend resize function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
*
* @return Backend resize layer function
*/
template <typename ResizeLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_resize_layer(ResizeLayerNode &node)
{
validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
ARM_COMPUTE_ERROR_ON(input == nullptr);
ARM_COMPUTE_ERROR_ON(output == nullptr);
const InterpolationPolicy policy = node.policy();
// Create and configure function
auto func = support::cpp14::make_unique<ResizeLayerFunction>();
func->configure(input, output, policy, BorderMode::CONSTANT);
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input shape: " << input->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< " Interpolation: " << policy
<< std::endl);
return std::move(func);
}
/** Create a backend softmax layer function
*
* @tparam SoftmaxLayerFunction Backend softmax function
* @tparam TargetInfo Target-specific information
*
* @param[in] node Node to create the backend function for
* @param[in] ctx Graph context
*
* @return Backend softmax layer function
*/
template <typename SoftmaxLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_softmax_layer(SoftmaxLayerNode &node, GraphContext &ctx)
{
validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);
// Extract IO and info
typename TargetInfo::TensorType *input = get_backing_tensor<TargetInfo>(node.input(0));
typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
const float beta = node.beta();
ARM_COMPUTE_ERROR_ON(input == nullptr);
ARM_COMPUTE_ERROR_ON(output == nullptr);
// Create and configure function
auto func = support::cpp14::make_unique<SoftmaxLayerFunction>(get_memory_manager(ctx, TargetInfo::TargetType));
func->configure(input, output, beta);
// Log info
ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
<< " Target " << TargetInfo::TargetType
<< " Data Type: " << input->info()->data_type()
<< " Input shape: " << input->info()->tensor_shape()
<< " Output shape: " << output->info()->tensor_shape()
<< std::endl);
return std::move(func);
}
} // namespace detail
} // namespace backends
} // namespace graph
} // namespace arm_compute
#endif /* __ARM_COMPUTE_GRAPH_BACKENDS_DETAIL_FUNCTION_HELPERS_H__ */