blob: d384400ed38d487da0b6d2688026c9ad8ff0dc19 [file] [log] [blame]
/*
* Copyright (c) 2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLLSTMLayer.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include <cmath>
#include <memory>
#include <tuple>
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
CLLSTMLayer::CLLSTMLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _fully_connected_input_gate(), _gemm_input_gate(), _transpose_input_gate(), _accum_input_gate1(), _accum_input_gate2(), _subtract_input_gate(),
_pixelwise_mul_input_gate(), _activation_input_gate(), _fully_connected_forget_gate(), _gemm_forget_gate(), _transpose_forget_gate(), _accum_forget_gate1(), _accum_forget_gate2(),
_pixelwise_mul_forget_gate(), _activation_forget_gate(), _fully_connected_cell_state(), _gemm_cell_state1(), _gemm_cell_state2(), _transpose_cell_state(), _accum_cell_state1(), _accum_cell_state2(),
_pixelwise_mul_cell_state1(), _activation_cell_state(), _cell_clip(), _pixelwise_mul_cell_state2(), _fully_connected_output(), _gemm_output(), _pixelwise_mul_output_state1(), _transpose_output(),
_accum_output1(), _accum_output2(), _activation_output(), _activation_output_state(), _pixelwise_mul_output_state2(), _fully_connected_output_state(), _gemm_output_state(), _accum_output_state(),
_projection_clip(), _copy_cell_state(), _copy_output(), _concat_scratch_buffer(), _input_gate_out1(), _input_gate_out2(), _input_gate_out3(), _input_gate_out4(), _input_gate_out5(),
_forget_gate_out1(), _forget_gate_out2(), _forget_gate_out3(), _forget_gate_out4(), _forget_gate_out5(), _cell_state_out1(), _cell_state_out2(), _cell_state_out3(), _cell_state_out4(),
_cell_state_out5(), _output1(), _output2(), _output3(), _output4(), _output5(), _cell_state_activation(), _output_projection1(), _ones(), _run_peephole_opt(false), _run_cifg_opt(false),
_perform_cell_clipping(false), _has_projection_weights(false), _perform_projection_clipping(false)
{
}
void CLLSTMLayer::configure(const ICLTensor *input, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
ICLTensor *output_state, ICLTensor *cell_state, ICLTensor *scratch_buffer, ICLTensor *output, const LSTMParams<ICLTensor> &lstm_params, const ActivationLayerInfo &activation_info,
float cell_threshold, float projection_threshold)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
forget_gate_bias, cell_bias, output_gate_bias, output_state, cell_state);
LSTMParams<ITensorInfo> lstm_params_info;
if(lstm_params.has_peephole_opt())
{
lstm_params_info.set_peephole_params(lstm_params.cell_to_forget_weights()->info(), lstm_params.cell_to_output_weights()->info());
}
if(lstm_params.has_projection())
{
lstm_params_info.set_projection_params(lstm_params.projection_weights()->info(), lstm_params.projection_bias()->info());
}
if(!lstm_params.has_cifg_opt())
{
lstm_params_info.set_cifg_params(lstm_params.input_to_input_weights()->info(), lstm_params.recurrent_to_input_weights()->info(),
lstm_params.cell_to_input_weights()->info(), lstm_params.input_gate_bias()->info());
}
ARM_COMPUTE_ERROR_THROW_ON(CLLSTMLayer::validate(input->info(), input_to_forget_weights->info(),
input_to_cell_weights->info(), input_to_output_weights->info(),
recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(), recurrent_to_output_weights->info(),
forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(),
output_state->info(), cell_state->info(), scratch_buffer->info(), output->info(), lstm_params_info,
activation_info, cell_threshold, projection_threshold));
const TensorShape cell_state_shape = cell_state->info()->tensor_shape();
TensorShape forget_gate1_shape = compute_transposed_shape(*recurrent_to_output_weights->info());
_forget_gate_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_forget_gate_out2.allocator()->init(TensorInfo(forget_gate1_shape, 1, input->info()->data_type()));
_forget_gate_out3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_forget_gate_out5.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
// Configure block that calculates the forget gate
// forget_gate = Activation(input * input_to_forget_weights + output_state * recurrent_to_forget_weights + PixelWiseMul(cell_state, cell_to_forget_weights) + forget_gate_bias)
_memory_group.manage(&_forget_gate_out1);
_fully_connected_forget_gate.configure(input, input_to_forget_weights, forget_gate_bias, &_forget_gate_out1);
_memory_group.manage(&_forget_gate_out2);
_transpose_forget_gate.configure(recurrent_to_forget_weights, &_forget_gate_out2);
_memory_group.manage(&_forget_gate_out3);
_gemm_forget_gate.configure(output_state, &_forget_gate_out2, nullptr, &_forget_gate_out3, 1.f, 0.f);
_forget_gate_out2.allocator()->allocate();
_memory_group.manage(&_forget_gate_out5);
_accum_forget_gate1.configure(&_forget_gate_out1, &_forget_gate_out3, &_forget_gate_out5, ConvertPolicy::SATURATE);
CLTensor *forget_gate_out = &_forget_gate_out5;
if(lstm_params.has_peephole_opt())
{
_forget_gate_out4.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_run_peephole_opt = true;
_memory_group.manage(&_forget_gate_out4);
_pixelwise_mul_forget_gate.configure(cell_state, lstm_params.cell_to_forget_weights(), &_forget_gate_out4, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN);
_accum_forget_gate2.configure(&_forget_gate_out5, &_forget_gate_out4, &_forget_gate_out3, ConvertPolicy::SATURATE);
_forget_gate_out4.allocator()->allocate();
_forget_gate_out5.allocator()->allocate();
forget_gate_out = &_forget_gate_out3;
}
else
{
_forget_gate_out3.allocator()->allocate();
}
_activation_forget_gate.configure(forget_gate_out, &_forget_gate_out1, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
forget_gate_out->allocator()->allocate();
_input_gate_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
// Configure block that calculates the input gate
// input_gate = Activation(input * input_to_input_weights + output_state * recurrent_to_input_weights + PixelWiseMul(cell_state, cell_to_input_weights) + input_gate_bias), without CIFG
// input_gate = 1 - forget_gate, with CIFG
if(lstm_params.has_cifg_opt())
{
_memory_group.manage(&_input_gate_out1);
_ones.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_subtract_input_gate.configure(&_ones, &_forget_gate_out1, &_input_gate_out1, ConvertPolicy::SATURATE);
_ones.allocator()->allocate();
_run_cifg_opt = true;
}
else
{
TensorShape input_gate_shape = compute_transposed_shape(*recurrent_to_output_weights->info());
_input_gate_out2.allocator()->init(TensorInfo(input_gate_shape, 1, input->info()->data_type()));
_input_gate_out3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_input_gate_out4.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_input_gate_out5.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_memory_group.manage(&_input_gate_out1);
_fully_connected_input_gate.configure(input, lstm_params.input_to_input_weights(), lstm_params.input_gate_bias(), &_input_gate_out1);
_memory_group.manage(&_input_gate_out2);
_transpose_input_gate.configure(lstm_params.recurrent_to_input_weights(), &_input_gate_out2);
_memory_group.manage(&_input_gate_out3);
_gemm_input_gate.configure(output_state, &_input_gate_out2, nullptr, &_input_gate_out3, 1.f, 0.f);
_input_gate_out2.allocator()->allocate();
_memory_group.manage(&_input_gate_out4);
_pixelwise_mul_input_gate.configure(cell_state, lstm_params.cell_to_input_weights(), &_input_gate_out4, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN);
_memory_group.manage(&_input_gate_out5);
_accum_input_gate1.configure(&_input_gate_out1, &_input_gate_out3, &_input_gate_out5, ConvertPolicy::SATURATE);
_input_gate_out3.allocator()->allocate();
_accum_input_gate2.configure(&_input_gate_out5, &_input_gate_out4, &_input_gate_out1, ConvertPolicy::SATURATE);
_input_gate_out4.allocator()->allocate();
_input_gate_out5.allocator()->allocate();
_activation_input_gate.configure(&_input_gate_out1, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
}
TensorShape cell_state1_shape = compute_transposed_shape(*recurrent_to_output_weights->info());
_cell_state_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_cell_state_out2.allocator()->init(TensorInfo(cell_state1_shape, 1, input->info()->data_type()));
_cell_state_out3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_cell_state_out4.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_cell_state_out5.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
// Configure block that calculates the cell state
// cell_state = Clip((PixelwiseMul(input_gate, Activation(input * input_to_cell_weights + output_state * recurrent_to_cell_weights + cell_bias)) + PixelwiseMul(forget_gate, cell_state)), cell_threshold)
_memory_group.manage(&_cell_state_out1);
_fully_connected_cell_state.configure(input, input_to_cell_weights, cell_bias, &_cell_state_out1);
_memory_group.manage(&_cell_state_out2);
_transpose_cell_state.configure(recurrent_to_cell_weights, &_cell_state_out2);
_memory_group.manage(&_cell_state_out3);
_gemm_cell_state1.configure(output_state, &_cell_state_out2, nullptr, &_cell_state_out3, 1.f, 0.f);
_cell_state_out2.allocator()->allocate();
_memory_group.manage(&_cell_state_out4);
_accum_cell_state1.configure(&_cell_state_out1, &_cell_state_out3, &_cell_state_out4, ConvertPolicy::SATURATE);
_activation_cell_state.configure(&_cell_state_out4, nullptr, activation_info);
_memory_group.manage(&_cell_state_out5);
_pixelwise_mul_cell_state1.configure(&_cell_state_out4, &_input_gate_out1, &_cell_state_out5, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN);
_input_gate_out1.allocator()->allocate();
_cell_state_out4.allocator()->allocate();
_pixelwise_mul_cell_state2.configure(&_forget_gate_out1, cell_state, &_cell_state_out3, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN);
_forget_gate_out1.allocator()->allocate();
_accum_cell_state2.configure(&_cell_state_out5, &_cell_state_out3, &_cell_state_out1, ConvertPolicy::SATURATE);
_cell_state_out3.allocator()->allocate();
_cell_state_out5.allocator()->allocate();
// Perform clipping
if(cell_threshold != 0.f)
{
_perform_cell_clipping = true;
_cell_clip.configure(&_cell_state_out1, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -cell_threshold, cell_threshold));
}
TensorShape output1_shape = compute_transposed_shape(*recurrent_to_output_weights->info());
_output1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_output2.allocator()->init(TensorInfo(output1_shape, 1, input->info()->data_type()));
_output3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_output5.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
// Configure block that calculates the output
// output_state = Activation(input * input_to_output_weights + output_state * recurrent_to_output_weights + PixelWiseMul(cell_state, cell_to_output_weights) + output_gate_bias)
_memory_group.manage(&_output1);
_fully_connected_output.configure(input, input_to_output_weights, output_gate_bias, &_output1);
_memory_group.manage(&_output2);
_transpose_output.configure(recurrent_to_output_weights, &_output2);
_memory_group.manage(&_output3);
_gemm_output.configure(output_state, &_output2, nullptr, &_output3, 1.f, 0.f);
_output2.allocator()->allocate();
_memory_group.manage(&_output5);
_accum_output1.configure(&_output1, &_output3, &_output5, ConvertPolicy::SATURATE);
_output3.allocator()->allocate();
CLTensor *output_gate_out = &_output5;
if(lstm_params.has_peephole_opt())
{
_output4.allocator()->init(TensorInfo(_cell_state_out1.info()->tensor_shape(), 1, input->info()->data_type()));
_memory_group.manage(&_output4);
_pixelwise_mul_output_state1.configure(&_cell_state_out1, lstm_params.cell_to_output_weights(), &_output4, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN);
_accum_output2.configure(&_output5, &_output4, &_output1, ConvertPolicy::SATURATE);
_output5.allocator()->allocate();
output_gate_out = &_output1;
// Allocate intermediate buffers
_output4.allocator()->allocate();
}
else
{
_output1.allocator()->allocate();
}
_activation_output.configure(output_gate_out, output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
output_gate_out->allocator()->allocate();
_cell_state_activation.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
// Configure block that calculates the output state
/** lstm_res = PixelwiseMul(output, Activation(cell_state))
*
* -- Clip(lstm_res * projection_weights + projection_bias, projection_threshold) , if there is a projection
* /
* output_state = --
* \
* -- lstm_res , otherwise
*/
_memory_group.manage(&_cell_state_activation);
_activation_output_state.configure(&_cell_state_out1, &_cell_state_activation, activation_info);
_pixelwise_mul_output_state2.configure(&_cell_state_activation, output, output_state, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN);
_cell_state_activation.allocator()->allocate();
if(lstm_params.has_projection())
{
_has_projection_weights = true;
_output_projection1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_memory_group.manage(&_output_projection1);
_fully_connected_output_state.configure(output_state, lstm_params.projection_weights(), lstm_params.projection_bias(), &_output_projection1);
// Perform clipping
if(projection_threshold != 0.f)
{
_perform_projection_clipping = true;
_projection_clip.configure(&_output_projection1, output_state, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -projection_threshold, projection_threshold));
}
// Allocate intermediate buffer
_output_projection1.allocator()->allocate();
}
// Copy cell state and output
_copy_cell_state.configure(&_cell_state_out1, cell_state);
_cell_state_out1.allocator()->allocate();
_copy_output.configure(output_state, output);
// Vector for holding the tensors to store in scratch buffer
std::vector<ICLTensor *> scratch_inputs;
if(lstm_params.has_cifg_opt())
{
scratch_inputs.emplace_back(&_input_gate_out1);
}
scratch_inputs.emplace_back(&_cell_state_out1);
scratch_inputs.emplace_back(forget_gate_out);
scratch_inputs.emplace_back(output_gate_out);
_concat_scratch_buffer.configure(scratch_inputs, scratch_buffer);
}
Status CLLSTMLayer::validate(const ITensorInfo *input, const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
const ITensorInfo *output_state, const ITensorInfo *cell_state, const ITensorInfo *scratch_buffer, const ITensorInfo *output,
const LSTMParams<ITensorInfo> &lstm_params, const ActivationLayerInfo &activation_info, float cell_threshold, float projection_threshold)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
forget_gate_bias, cell_bias, output_gate_bias, output_state, cell_state);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights,
recurrent_to_output_weights, forget_gate_bias, cell_bias, output_gate_bias, output_state, cell_state);
ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_forget_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_cell_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_forget_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_cell_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(cell_bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(output_gate_bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(output_state->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(cell_state->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(scratch_buffer->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(cell_bias->dimension(0) * 4 != scratch_buffer->dimension(0) && cell_bias->dimension(0) * 3 != scratch_buffer->dimension(0));
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_output_weights(), lstm_params.cell_to_forget_weights());
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_output_weights()->num_dimensions() > 1);
}
TensorShape units_out_transposed_shape = compute_transposed_shape(*recurrent_to_output_weights);
TensorShape gemmv_shape{ 1, output_state->dimension(1) };
TensorShape num_units_transposed_shape = compute_transposed_shape(*forget_gate_bias);
const TensorInfo units_out_transposed_info = TensorInfo(units_out_transposed_shape, 1, input->data_type());
const TensorInfo gemmv_shape_info = TensorInfo(gemmv_shape, 1, input->data_type());
const TensorInfo num_units_transposed_info = TensorInfo(num_units_transposed_shape, 1, input->data_type());
// Validate forget gate
ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(input, input_to_forget_weights, forget_gate_bias, cell_state));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(output_state, &units_out_transposed_info, nullptr, cell_state, 1.f, 0.f, GEMMInfo()));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAdditionKernel::validate(cell_state, cell_state, cell_state, ConvertPolicy::SATURATE));
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(cell_state, &num_units_transposed_info, nullptr, &gemmv_shape_info, 1.f, 0.f, GEMMInfo()));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(cell_state, &gemmv_shape_info, cell_state, ConvertPolicy::SATURATE));
}
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, cell_state, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
// Validate input gate
if(!lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.input_to_input_weights(), lstm_params.recurrent_to_input_weights(), lstm_params.cell_to_input_weights(), lstm_params.input_gate_bias());
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_to_input_weights()->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.recurrent_to_input_weights()->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_input_weights()->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_gate_bias()->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(input, lstm_params.input_to_input_weights(), lstm_params.input_gate_bias(), cell_state));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(cell_state, &num_units_transposed_info, nullptr, &gemmv_shape_info, 1.f, 0.f, GEMMInfo()));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(cell_state, &gemmv_shape_info, cell_state, ConvertPolicy::SATURATE));
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticSubtractionKernel::validate(cell_state, cell_state, cell_state, ConvertPolicy::SATURATE));
}
// Validate cell state
ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(input, input_to_cell_weights, cell_bias, cell_state));
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, nullptr, activation_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(cell_state, cell_state, cell_state, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN));
if(cell_threshold != 0.f)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -cell_threshold, cell_threshold)));
}
ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(input, input_to_output_weights, output_gate_bias, cell_state));
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(cell_state, cell_state, cell_state, ConvertPolicy::SATURATE));
}
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
// Validate output state
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, cell_state, activation_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(cell_state, output, output_state, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN));
if(lstm_params.has_projection())
{
ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(output_state, lstm_params.projection_weights(), lstm_params.projection_bias(), cell_state));
if(projection_threshold != 0.f)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, output_state, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -projection_threshold,
projection_threshold)));
}
}
std::vector<TensorInfo> inputs_vector_info;
if(lstm_params.has_cifg_opt())
{
inputs_vector_info.emplace_back(*cell_state);
}
inputs_vector_info.emplace_back(*cell_state);
inputs_vector_info.emplace_back(*cell_state);
inputs_vector_info.emplace_back(*cell_state);
std::vector<ITensorInfo *> inputs_vector_info_raw;
for(auto &input : inputs_vector_info)
{
inputs_vector_info_raw.emplace_back(&input);
}
ARM_COMPUTE_RETURN_ON_ERROR(CLWidthConcatenateLayer::validate(inputs_vector_info_raw, scratch_buffer));
return Status{};
}
void CLLSTMLayer::run()
{
_memory_group.acquire();
_fully_connected_forget_gate.run();
CLScheduler::get().enqueue(_transpose_forget_gate);
_gemm_forget_gate.run();
CLScheduler::get().enqueue(_accum_forget_gate1);
if(_run_peephole_opt)
{
CLScheduler::get().enqueue(_pixelwise_mul_forget_gate);
_accum_forget_gate2.run();
}
CLScheduler::get().enqueue(_activation_forget_gate);
if(_run_cifg_opt)
{
_ones.map(true);
if(_ones.info()->data_type() == DataType::F16)
{
std::fill_n(reinterpret_cast<half *>(_ones.buffer()), _ones.info()->total_size() / _ones.info()->element_size(), 1);
}
else
{
std::fill_n(reinterpret_cast<float *>(_ones.buffer()), _ones.info()->total_size() / _ones.info()->element_size(), 1);
}
_ones.unmap();
CLScheduler::get().enqueue(_subtract_input_gate);
}
else
{
_fully_connected_input_gate.run();
CLScheduler::get().enqueue(_transpose_input_gate);
_gemm_input_gate.run();
CLScheduler::get().enqueue(_pixelwise_mul_input_gate);
CLScheduler::get().enqueue(_accum_input_gate1);
_accum_input_gate2.run();
CLScheduler::get().enqueue(_activation_input_gate);
}
_fully_connected_cell_state.run();
CLScheduler::get().enqueue(_transpose_cell_state);
_gemm_cell_state1.run();
CLScheduler::get().enqueue(_accum_cell_state1);
CLScheduler::get().enqueue(_activation_cell_state);
CLScheduler::get().enqueue(_pixelwise_mul_cell_state1);
CLScheduler::get().enqueue(_pixelwise_mul_cell_state2);
CLScheduler::get().enqueue(_accum_cell_state2);
if(_perform_cell_clipping)
{
CLScheduler::get().enqueue(_cell_clip);
}
_fully_connected_output.run();
CLScheduler::get().enqueue(_transpose_output);
_gemm_output.run();
CLScheduler::get().enqueue(_accum_output1);
if(_run_peephole_opt)
{
CLScheduler::get().enqueue(_pixelwise_mul_output_state1);
_accum_output2.run();
}
CLScheduler::get().enqueue(_activation_output);
CLScheduler::get().enqueue(_activation_output_state);
CLScheduler::get().enqueue(_pixelwise_mul_output_state2);
if(_has_projection_weights)
{
_fully_connected_output_state.run();
if(_perform_projection_clipping)
{
CLScheduler::get().enqueue(_projection_clip);
}
}
CLScheduler::get().enqueue(_copy_cell_state);
CLScheduler::get().enqueue(_copy_output);
_concat_scratch_buffer.run();
_memory_group.release();
}