blob: b530fb0c00ef6567789701c01bccb8cb43fd747f [file] [log] [blame]
/*
* Copyright (c) 2018-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph/mutators/NodeFusionMutator.h"
#include "arm_compute/graph/GraphBuilder.h"
#include "arm_compute/graph/Logger.h"
#include "arm_compute/graph/Utils.h"
#include "arm_compute/graph/backends/BackendRegistry.h"
#include "arm_compute/graph/nodes/FusedConvolutionBatchNormalizationNode.h"
#include "arm_compute/graph/nodes/Nodes.h"
#include "support/Cast.h"
#include <set>
namespace arm_compute
{
namespace graph
{
namespace detail
{
void fuse_convolution_with_batch_normalization(Graph &g, const Edge *output_edge)
{
ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<ConvolutionLayerNode *>(output_edge->producer());
auto *bn_node = arm_compute::utils::cast::polymorphic_downcast<BatchNormalizationLayerNode *>(output_edge->consumer());
// Not fusing if number of groups is greater than 1
if(conv_node->num_groups() > 1)
{
return;
}
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing convolution node with ID : " << output_edge->producer_id()
<< " with BatchNormalization Layer node with ID : " << output_edge->consumer_id() << std::endl);
// Prevent fusion if fused node has an output accessor
if(conv_node->output(0)->accessor() == nullptr)
{
const Target assigned_target = conv_node->assigned_target();
// Extract conv inputs
const auto conv_input_id = conv_node->input_edge(0)->producer_id();
const auto conv_weights_id = conv_node->input_edge(1)->producer_id();
const auto conv_info = conv_node->convolution_info();
const auto conv_method = conv_node->convolution_method();
const auto num_groups = conv_node->num_groups();
const auto act_info = bn_node->fused_activation();
FastMathHint fast_math_hint = conv_node->fast_math_hint();
// Extract bn inputs
const auto bn_mean_id = bn_node->input_edge(1)->producer_id();
const auto bn_var_id = bn_node->input_edge(2)->producer_id();
const auto epsilon = bn_node->epsilon();
// Create the fused node
const NodeID fused_id = g.add_node<FusedConvolutionBatchNormalizationNode>(epsilon, conv_info, num_groups, conv_method, fast_math_hint, act_info);
if(conv_node->input_edge(2) != nullptr)
{
auto conv_bias_id = conv_node->input_edge(2)->producer_id();
g.add_connection(conv_bias_id, 0, fused_id, 2);
}
// Add connections from the conv/batch_norm inputs to the fused node
g.add_connection(conv_input_id, 0, fused_id, 0);
g.add_connection(conv_weights_id, 0, fused_id, 1);
g.add_connection(bn_mean_id, 0, fused_id, 3);
g.add_connection(bn_var_id, 0, fused_id, 4);
if(bn_node->input_edge(3) != nullptr)
{
const auto bn_beta_id = bn_node->input_edge(3)->producer_id();
g.add_connection(bn_beta_id, 0, fused_id, 5);
}
if(bn_node->input_edge(4) != nullptr)
{
const auto bn_gamma_id = bn_node->input_edge(4)->producer_id();
g.add_connection(bn_gamma_id, 0, fused_id, 6);
}
auto fused_node = g.node(fused_id);
std::vector<NodeIdxPair> bn_driving_nodes = get_driving_nodes(*bn_node);
// Extract batch normalization node accessor if any
auto bn_node_accessor = bn_node->output(0)->extract_accessor();
auto bn_node_name = bn_node->name();
// Remove batch normalization node
g.remove_node(bn_node->id());
// Get driving nodes of batch normalization node
for(auto &driving_node : bn_driving_nodes)
{
g.add_connection(fused_id, 0, driving_node.node_id, driving_node.index);
configure_tensor(fused_node->output(0));
}
// Update fused node outputs
fused_node->output(0)->set_accessor(std::move(bn_node_accessor));
fused_node->set_assigned_target(assigned_target);
fused_node->set_common_node_parameters(NodeParams{ conv_node->name() + "+" + bn_node_name, assigned_target });
// Remove convolution node
g.remove_node(conv_node->id());
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution with batch normalization due to the presence of an output accessor\n");
}
}
void fuse_depthwise_convolution_with_batch_normalization(Graph &g, const Edge *output_edge)
{
ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
auto *depth_conv_node = arm_compute::utils::cast::polymorphic_downcast<DepthwiseConvolutionLayerNode *>(output_edge->producer());
auto *bn_node = arm_compute::utils::cast::polymorphic_downcast<BatchNormalizationLayerNode *>(output_edge->consumer());
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing depthwise convolution node with ID : " << output_edge->producer_id()
<< " with BatchNormalization Layer node with ID : " << output_edge->consumer_id() << std::endl);
// Prevent fusion if fused node has an output accessor
if(depth_conv_node->output(0)->accessor() == nullptr)
{
const Target assigned_target = depth_conv_node->assigned_target();
// Extract conv inputs
const auto depth_conv_input_id = depth_conv_node->input_edge(0)->producer_id();
const auto conv_weights_id = depth_conv_node->input_edge(1)->producer_id();
const auto conv_info = depth_conv_node->convolution_info();
const auto depth_conv_method = depth_conv_node->depthwise_convolution_method();
const auto depth_multiplier = depth_conv_node->depth_multiplier();
const auto act_info = bn_node->fused_activation();
// Extract bn inputs
const auto bn_mean_id = bn_node->input_edge(1)->producer_id();
const auto bn_var_id = bn_node->input_edge(2)->producer_id();
const auto bn_beta_id = bn_node->input_edge(3)->producer_id();
const auto bn_gamma_id = bn_node->input_edge(4)->producer_id();
const auto epsilon = bn_node->epsilon();
// Create the fused node
const NodeID fused_id = g.add_node<FusedDepthwiseConvolutionBatchNormalizationNode>(epsilon, conv_info, depth_multiplier, depth_conv_method, act_info);
if(depth_conv_node->input_edge(2) != nullptr)
{
const auto conv_bias_id = depth_conv_node->input_edge(2)->producer_id();
g.add_connection(conv_bias_id, 0, fused_id, 2);
}
// Add connections from the conv/batch_norm inputs to the fused node
g.add_connection(depth_conv_input_id, 0, fused_id, 0);
g.add_connection(conv_weights_id, 0, fused_id, 1);
g.add_connection(bn_mean_id, 0, fused_id, 3);
g.add_connection(bn_var_id, 0, fused_id, 4);
g.add_connection(bn_beta_id, 0, fused_id, 5);
g.add_connection(bn_gamma_id, 0, fused_id, 6);
auto fused_node = g.node(fused_id);
std::vector<NodeIdxPair> bn_driving_nodes = get_driving_nodes(*bn_node);
// Extract batch normalization node accessor if any
auto bn_node_accessor = bn_node->output(0)->extract_accessor();
auto bn_node_name = bn_node->name();
// Remove batch normalization node
g.remove_node(bn_node->id());
// Get driving nodes of batch normalization node
for(auto &driving_node : bn_driving_nodes)
{
g.add_connection(fused_id, 0, driving_node.node_id, driving_node.index);
configure_tensor(fused_node->output(0));
}
// Update fused node outputs
fused_node->output(0)->set_accessor(std::move(bn_node_accessor));
fused_node->set_assigned_target(assigned_target);
fused_node->set_common_node_parameters(NodeParams{ depth_conv_node->name() + "+" + bn_node_name, assigned_target });
// Remove convolution node
g.remove_node(depth_conv_node->id());
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of depthwise convolution with batch normalization due to the presence of an output accessor\n");
}
}
template <typename N>
void fuse_node_with_activation(Graph &g, const Edge *output_edge, const std::set<Activation> &supported_fused_activations)
{
ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
auto *n_node = arm_compute::utils::cast::polymorphic_downcast<N *>(output_edge->producer());
auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(output_edge->consumer());
ARM_COMPUTE_ERROR_ON(act_node->output(0) == nullptr || n_node->output(0) == nullptr);
// Check if activation is supported for fusion
if(supported_fused_activations.count(act_node->activation_info().activation()) == 0)
{
return;
}
// EltwiseLayerNode can only be fused when dataype is float
if(n_node->type() == NodeType::EltwiseLayer && !is_data_type_float(n_node->output(0)->desc().data_type))
{
return;
}
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing node with ID : " << output_edge->producer_id()
<< " with Activation Layer node with ID : " << output_edge->consumer_id() << std::endl);
// Prevent fusion if fused node has an output accessor
if(n_node->output(0)->accessor() == nullptr)
{
// Get driving nodes of activation node
std::vector<NodeIdxPair> act_driving_nodes = get_driving_nodes(*act_node);
// Set activation info to fused node
n_node->set_fused_activation(act_node->activation_info());
// Extract activation node accessor if any
auto act_node_accessor = act_node->output(0)->extract_accessor();
// Remove activation node
g.remove_node(act_node->id());
// Update fused node outputs
for(auto &driving_node : act_driving_nodes)
{
g.add_connection(n_node->id(), 0, driving_node.node_id, driving_node.index);
}
// Update accessor to fused node
n_node->output(0)->set_accessor(std::move(act_node_accessor));
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of node with activation due to the presence of an output accessor\n");
}
}
bool check_padding_info(const DataLayout &layout, const PaddingList &padding_list, PaddingInfo &pad_w, PaddingInfo &pad_h)
{
if(layout == DataLayout::NCHW || layout == DataLayout::NHWC)
{
const PaddingInfo zero_padding(0, 0);
const unsigned int height_index = get_dimension_idx(layout, DataLayoutDimension::HEIGHT);
const unsigned int width_index = get_dimension_idx(layout, DataLayoutDimension::WIDTH);
pad_w = width_index < padding_list.size() ? padding_list[width_index] : zero_padding;
pad_h = height_index < padding_list.size() ? padding_list[height_index] : zero_padding;
for(unsigned int i = 0; i < padding_list.size(); i++)
{
if(i != height_index && i != width_index && padding_list[i] != zero_padding)
{
// if the index is not either height or width, don't fuse
return false;
}
}
return true;
}
return false;
}
template <typename N>
void fuse_pad_with_convolution(Graph &g, const Edge *output_edge)
{
auto *pad_node = arm_compute::utils::cast::polymorphic_downcast<PadLayerNode *>(output_edge->producer());
auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<N *>(output_edge->consumer());
const Edge *input_edge = pad_node->input_edge(0);
if(input_edge != nullptr && input_edge->tensor() != nullptr && pad_node->output(0)->accessor() == nullptr
&& pad_node->pad_value().get<float>() == 0.0)
{
const DataLayout layout = input_edge->tensor()->desc().layout;
const PaddingList padding_list = pad_node->padding();
PaddingInfo pad_w, pad_h;
if(check_padding_info(layout, padding_list, pad_w, pad_h))
{
// Add paddings to the convolution node
const PadStrideInfo conv_info = conv_node->convolution_info();
const PadStrideInfo new_conv_info(
conv_info.stride().first,
conv_info.stride().second,
conv_info.pad_left() + pad_w.first,
conv_info.pad_right() + pad_w.second,
conv_info.pad_top() + pad_h.first,
conv_info.pad_bottom() + pad_h.second,
conv_info.round());
conv_node->set_convolution_info(new_conv_info);
// Update drivers of the convolution node
std::vector<NodeIdxPair> pad_driver_nodes = get_driver_nodes(*pad_node);
g.remove_node(pad_node->id());
// Update fused node inputs
for(auto &driver_node : pad_driver_nodes)
{
g.add_connection(driver_node.node_id, driver_node.index, conv_node->id(), 0);
}
}
}
}
template <typename N1, typename N2, typename F, typename... Args>
void fuse_layer(Graph &g, std::function<bool(INode &)> const &prec, const F fuse_fcn, Args &&... optional_arguments)
{
// Note that fused nodes may be added to the end of the node list.
// Instead of only looping over the original list of nodes, we loop over the current node list which could be growing.
// This is intentional as it probes the newly added fused nodes for further fusing opportunities.
for(unsigned int i = 0; i < g.nodes().size(); ++i)
{
auto node = g.node(i);
// Check if the node is of type N and not a branching node
if(node && node->type() == N1::node_type && node->output_edges().size() == 1)
{
const auto output_edge_id = *node->output_edges().begin();
const auto output_edge = g.edge(output_edge_id);
// Check if following node is an activation layer node
if((output_edge != nullptr) && (output_edge->consumer() != nullptr) && (output_edge->consumer()->type() == N2::node_type) && prec(*output_edge->producer()))
{
fuse_fcn(g, output_edge, optional_arguments...);
}
}
}
}
} // namespace detail
const char *NodeFusionMutator::name()
{
return "NodeFusionMutator";
}
IGraphMutator::MutationType NodeFusionMutator::type() const
{
return IGraphMutator::MutationType::Backend;
}
void NodeFusionMutator::mutate(Graph &g)
{
// Supported activations when fusing
const std::set<Activation> supported_fused_activations = { Activation::ABS, Activation::BOUNDED_RELU, Activation::ELU,
Activation::HARD_SWISH, Activation::IDENTITY, Activation::LEAKY_RELU,
Activation::LINEAR, Activation::LOGISTIC, Activation::LU_BOUNDED_RELU,
Activation::RELU, Activation::SOFT_RELU, Activation::SQRT,
Activation::SQUARE, Activation::TANH
};
// Preconditions
auto empty_prec = [](INode &)
{
return true;
};
auto cl_target_prec = [](INode & n)
{
return n.assigned_target() == Target::CL;
};
auto qs8_prec = [&g](INode & n)
{
ARM_COMPUTE_ERROR_ON(n.output(0) == nullptr);
const auto output_edge_id = *n.output_edges().begin();
const auto output_edge = g.edge(output_edge_id);
// To perform fusion the two nodes must have same output quantization information
const bool same_qinfo = n.output(0)->desc().quant_info == output_edge->producer()->output(0)->desc().quant_info;
const bool output_qasymm8 = n.output(0)->desc().data_type == DataType::QASYMM8;
return (output_qasymm8 && same_qinfo) || !output_qasymm8;
};
// Fusion mutations
detail::fuse_layer<PadLayerNode, ConvolutionLayerNode>(g, empty_prec, detail::fuse_pad_with_convolution<ConvolutionLayerNode>);
detail::fuse_layer<PadLayerNode, DepthwiseConvolutionLayerNode>(g, empty_prec, detail::fuse_pad_with_convolution<DepthwiseConvolutionLayerNode>);
detail::fuse_layer<BatchNormalizationLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<BatchNormalizationLayerNode>, supported_fused_activations);
detail::fuse_layer<ConvolutionLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<ConvolutionLayerNode>, supported_fused_activations);
detail::fuse_layer<DepthwiseConvolutionLayerNode, ActivationLayerNode>(g, qs8_prec, detail::fuse_node_with_activation<DepthwiseConvolutionLayerNode>, supported_fused_activations);
detail::fuse_layer<FullyConnectedLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<FullyConnectedLayerNode>, supported_fused_activations);
detail::fuse_layer<EltwiseLayerNode, ActivationLayerNode>(g, cl_target_prec, detail::fuse_node_with_activation<EltwiseLayerNode>, supported_fused_activations);
detail::fuse_layer<ConvolutionLayerNode, BatchNormalizationLayerNode>(g, empty_prec, detail::fuse_convolution_with_batch_normalization);
detail::fuse_layer<DepthwiseConvolutionLayerNode, BatchNormalizationLayerNode>(g, empty_prec, detail::fuse_depthwise_convolution_with_batch_normalization);
}
} // namespace graph
} // namespace arm_compute