blob: 26f479f61a5d80d8f25885f9bdc46eb26ebb62c1 [file] [log] [blame]
/*
* Copyright (c) 2018-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/gpu/cl/kernels/ClGemmLowpOffsetContributionOutputStageKernel.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/helpers/AdjustVecSize.h"
#include "arm_compute/core/utils/StringUtils.h"
#include "arm_compute/core/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/Cast.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace opencl
{
namespace kernels
{
namespace
{
Status validate_arguments(const ITensorInfo *mm_result,
const ITensorInfo *vector_sum_col,
const ITensorInfo *vector_sum_row,
const ITensorInfo *bias,
const ITensorInfo *dst,
int32_t a_offset,
int32_t b_offset,
const GEMMLowpOutputStageInfo &output_stage,
const ITensorInfo *output_multipliers,
const ITensorInfo *output_shifts)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
if (bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != bias->dimension(0));
}
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_multipliers, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_multipliers->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output_shifts, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_shifts->num_dimensions() > 1);
if (output_stage.is_quantized_per_channel)
{
ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != output_shifts->dimension(0));
ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != output_multipliers->dimension(0));
}
// If a_offset == 0, vector_sum_col can be a nullptr
if (a_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
}
// If b_offset == 0, vector_sum_row can be a nullptr
if (b_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
// Check if input is a 3D reinterpretation
const bool reinterpret_as_3d =
mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
// Validate input
ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) !=
(mm_result->dimension(1) * mm_result->dimension(2)));
ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
TensorShape output_shape = mm_result->tensor_shape();
if (output_shape.num_dimensions() > 1)
{
const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
vector_sum_row_shape.collapse_from(1);
output_shape.collapse_from(output_batch_idx);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
"mm_result tensor must have the same number of batches of output tensor");
if (a_offset != 0)
{
TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
vector_sum_col_shape.collapse_from(1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 &&
vector_sum_col_shape[1] != vector_sum_row_shape[1],
"vector_sum_col tensor must have the same number of batches of "
"vector_sum_row_shape or the number of batches must be set to 1");
}
}
}
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.type == GEMMLowpOutputStageType::NONE);
// Checks performed when output is configured
if ((dst != nullptr) && (dst->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.output_data_type != dst->data_type());
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mm_result, dst);
}
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output_stage.gemmlowp_multipliers.size() != output_stage.gemmlowp_shifts.size(),
"per channel quantization info is incorrect");
return Status{};
}
} // namespace
ClGemmLowpOffsetContributionOutputStageKernel::ClGemmLowpOffsetContributionOutputStageKernel()
{
_type = CLKernelType::ELEMENTWISE;
}
void ClGemmLowpOffsetContributionOutputStageKernel::configure(const CLCompileContext &compile_context,
const ITensorInfo *mm_result,
const ITensorInfo *vector_sum_col,
const ITensorInfo *vector_sum_row,
const ITensorInfo *bias,
ITensorInfo *dst,
int32_t k,
int32_t a_offset,
int32_t b_offset,
const GEMMLowpOutputStageInfo &output_stage,
const ITensorInfo *output_multipliers,
const ITensorInfo *output_shifts)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, dst, output_multipliers, output_shifts);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, dst, a_offset,
b_offset, output_stage, output_multipliers, output_shifts));
auto padding_info =
get_padding_info({mm_result, vector_sum_col, vector_sum_row, bias, dst, output_multipliers, output_shifts});
const int min = output_stage.gemmlowp_min_bound;
const int max = output_stage.gemmlowp_max_bound;
_is_quantized_per_channel = output_stage.is_quantized_per_channel;
// Check if input is a 3D reinterpretation
const bool reinterpret_as_3d = vector_sum_row != nullptr && mm_result->num_dimensions() > 1 &&
mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
// Auto initialize the output
auto_init_if_empty(*dst, mm_result->clone()->set_data_type(output_stage.output_data_type));
const unsigned int num_elems_processed_per_iteration = adjust_vec_size(4, mm_result->dimension(0));
// Set the arguments to pass at compile time
CLBuildOptions build_opts;
build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(num_elems_processed_per_iteration));
build_opts.add_option("-DVEC_SIZE_LEFTOVER=" +
support::cpp11::to_string(mm_result->dimension(0) % num_elems_processed_per_iteration));
// If a_offset == 0, vector_sum_col can be a nullptr
if (a_offset != 0)
{
build_opts.add_option("-DA_OFFSET=" + support::cpp11::to_string(a_offset));
build_opts.add_option_if(vector_sum_col->tensor_shape().num_dimensions() > 1, "-DSUM_COL_HAS_BATCHES");
}
// If b_offset == 0, vector_sum_row can be a nullptr
build_opts.add_option_if(b_offset != 0, "-DB_OFFSET=" + support::cpp11::to_string(b_offset));
build_opts.add_option("-DK_OFFSET=" + support::cpp11::to_string(a_offset * b_offset * k));
build_opts.add_option_if(reinterpret_as_3d,
"-DHEIGHT_INPUT3D=" + support::cpp11::to_string(mm_result->dimension(1)));
build_opts.add_option_if(reinterpret_as_3d,
"-DDEPTH_INPUT3D=" + support::cpp11::to_string(mm_result->dimension(2)));
build_opts.add_option_if(bias != nullptr, "-DADD_BIAS");
build_opts.add_option("-DRESULT_OFFSET=" + support::cpp11::to_string(output_stage.gemmlowp_offset));
build_opts.add_option("-DRESULT_MULTIPLIER=" + support::cpp11::to_string(output_stage.gemmlowp_multipliers[0]));
build_opts.add_option("-DRESULT_SHIFT=" + support::cpp11::to_string(output_stage.gemmlowp_shifts[0]));
build_opts.add_option_if(_is_quantized_per_channel, "-DPER_CHANNEL_QUANTIZATION");
build_opts.add_option("-DOUTPUT_DATA_TYPE=" + get_cl_type_from_data_type(dst->data_type()));
PixelValue min_val{};
PixelValue max_val{};
std::tie(min_val, max_val) = get_min_max(dst->data_type());
build_opts.add_option_if((min > min_val.get<int32_t>()), "-DMIN_BOUND=" + support::cpp11::to_string(min));
build_opts.add_option_if((max < max_val.get<int32_t>()), "-DMAX_BOUND=" + support::cpp11::to_string(max));
std::string kernel_name("gemmlowp_offset_contribution");
kernel_name += "_" + string_from_gemmlowp_output_stage(output_stage.type);
// A macro guard to compile ONLY the kernel of interest
build_opts.add_option("-D" + upper_string(kernel_name));
// Create kernel
_kernel = create_kernel(compile_context, kernel_name, build_opts.options());
// Configure kernel window
Window win = calculate_max_window(*mm_result, Steps(num_elems_processed_per_iteration));
ICLKernel::configure_internal(win);
// Set config_id for enabling LWS tuning
_config_id = kernel_name + "_";
_config_id += support::cpp11::to_string(mm_result->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(mm_result->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(mm_result->dimension(2));
ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
}
Status ClGemmLowpOffsetContributionOutputStageKernel::validate(const ITensorInfo *mm_result,
const ITensorInfo *vector_sum_col,
const ITensorInfo *vector_sum_row,
const ITensorInfo *bias,
const ITensorInfo *dst,
int32_t a_offset,
int32_t b_offset,
const GEMMLowpOutputStageInfo &output_stage,
const ITensorInfo *output_multipliers,
const ITensorInfo *output_shifts)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, dst, a_offset,
b_offset, output_stage, output_multipliers, output_shifts));
return Status{};
}
void ClGemmLowpOffsetContributionOutputStageKernel::run_op(ITensorPack &tensors,
const Window &window,
cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
const auto mm_result =
utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SRC));
const auto bias =
utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_BIAS));
const auto vector_sum_col =
utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_COL_SUM));
const auto vector_sum_row =
utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_VEC_ROW_SUM));
const auto output_shifts =
utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_SHIFTS));
const auto output_multipliers =
utils::cast::polymorphic_downcast<const ICLTensor *>(tensors.get_const_tensor(TensorType::ACL_MULTIPLIERS));
auto dst = utils::cast::polymorphic_downcast<ICLTensor *>(tensors.get_tensor(TensorType::ACL_DST));
Window collapsed = window.collapse_if_possible(ICLKernel::window(), Window::DimZ);
Window slice = collapsed.first_slice_window_3D();
// Set window for vector_sum_col
Window win_vector_sum_col = slice;
win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
// Set window for vector_sum_row
Window win_vector_sum_row = slice;
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
Window biases_slice = slice;
biases_slice.set(Window::DimY, Window::Dimension(0, 1, 1));
biases_slice.set(Window::DimZ, Window::Dimension(0, 1, 1));
do
{
unsigned int idx = 0;
add_3D_tensor_argument(idx, mm_result, slice);
add_2D_tensor_argument_if((vector_sum_col != nullptr), idx, vector_sum_col, win_vector_sum_col);
add_2D_tensor_argument_if((vector_sum_row != nullptr), idx, vector_sum_row, win_vector_sum_row);
add_1D_tensor_argument_if((bias != nullptr), idx, bias, biases_slice);
add_3D_tensor_argument(idx, dst, slice);
add_1D_tensor_argument_if(_is_quantized_per_channel, idx, output_multipliers, biases_slice);
add_1D_tensor_argument_if(_is_quantized_per_channel, idx, output_shifts, biases_slice);
enqueue(queue, *this, slice, lws_hint());
} while (collapsed.slide_window_slice_3D(slice));
}
} // namespace kernels
} // namespace opencl
} // namespace arm_compute