blob: b2c1d2631e7c2820b50bef6fb34236c35ad0a247 [file] [log] [blame]
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLGenerateProposalsLayer.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/CL/functions/CLDequantizationLayer.h"
#include "arm_compute/runtime/CL/functions/CLQuantizationLayer.h"
#include "src/common/utils/Log.h"
#include "src/core/CL/kernels/CLBoundingBoxTransformKernel.h"
#include "src/core/CL/kernels/CLGenerateProposalsLayerKernel.h"
#include "src/core/CL/kernels/CLPadLayerKernel.h"
#include "src/core/helpers/AutoConfiguration.h"
namespace arm_compute
{
CLGenerateProposalsLayer::CLGenerateProposalsLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager),
_permute_deltas(),
_flatten_deltas(),
_permute_scores(),
_flatten_scores(),
_compute_anchors_kernel(std::make_unique<CLComputeAllAnchorsKernel>()),
_bounding_box_kernel(std::make_unique<CLBoundingBoxTransformKernel>()),
_pad_kernel(std::make_unique<CLPadLayerKernel>()),
_dequantize_anchors(std::make_unique<CLDequantizationLayer>()),
_dequantize_deltas(std::make_unique<CLDequantizationLayer>()),
_quantize_all_proposals(std::make_unique<CLQuantizationLayer>()),
_cpp_nms(memory_manager),
_is_nhwc(false),
_is_qasymm8(false),
_deltas_permuted(),
_deltas_flattened(),
_deltas_flattened_f32(),
_scores_permuted(),
_scores_flattened(),
_all_anchors(),
_all_anchors_f32(),
_all_proposals(),
_all_proposals_quantized(),
_keeps_nms_unused(),
_classes_nms_unused(),
_proposals_4_roi_values(),
_all_proposals_to_use(nullptr),
_num_valid_proposals(nullptr),
_scores_out(nullptr)
{
}
CLGenerateProposalsLayer::~CLGenerateProposalsLayer() = default;
void CLGenerateProposalsLayer::configure(const ICLTensor *scores,
const ICLTensor *deltas,
const ICLTensor *anchors,
ICLTensor *proposals,
ICLTensor *scores_out,
ICLTensor *num_valid_proposals,
const GenerateProposalsInfo &info)
{
configure(CLKernelLibrary::get().get_compile_context(), scores, deltas, anchors, proposals, scores_out,
num_valid_proposals, info);
}
void CLGenerateProposalsLayer::configure(const CLCompileContext &compile_context,
const ICLTensor *scores,
const ICLTensor *deltas,
const ICLTensor *anchors,
ICLTensor *proposals,
ICLTensor *scores_out,
ICLTensor *num_valid_proposals,
const GenerateProposalsInfo &info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(scores, deltas, anchors, proposals, scores_out, num_valid_proposals);
ARM_COMPUTE_ERROR_THROW_ON(CLGenerateProposalsLayer::validate(scores->info(), deltas->info(), anchors->info(),
proposals->info(), scores_out->info(),
num_valid_proposals->info(), info));
ARM_COMPUTE_LOG_PARAMS(scores, deltas, anchors, proposals, scores_out, num_valid_proposals, info);
_is_nhwc = scores->info()->data_layout() == DataLayout::NHWC;
const DataType scores_data_type = scores->info()->data_type();
_is_qasymm8 = scores_data_type == DataType::QASYMM8;
const int num_anchors = scores->info()->dimension(
get_data_layout_dimension_index(scores->info()->data_layout(), DataLayoutDimension::CHANNEL));
const int feat_width = scores->info()->dimension(
get_data_layout_dimension_index(scores->info()->data_layout(), DataLayoutDimension::WIDTH));
const int feat_height = scores->info()->dimension(
get_data_layout_dimension_index(scores->info()->data_layout(), DataLayoutDimension::HEIGHT));
const int total_num_anchors = num_anchors * feat_width * feat_height;
const int pre_nms_topN = info.pre_nms_topN();
const int post_nms_topN = info.post_nms_topN();
const size_t values_per_roi = info.values_per_roi();
const QuantizationInfo scores_qinfo = scores->info()->quantization_info();
const DataType rois_data_type = (_is_qasymm8) ? DataType::QASYMM16 : scores_data_type;
const QuantizationInfo rois_qinfo =
(_is_qasymm8) ? QuantizationInfo(0.125f, 0) : scores->info()->quantization_info();
// Compute all the anchors
_memory_group.manage(&_all_anchors);
_compute_anchors_kernel->configure(compile_context, anchors, &_all_anchors,
ComputeAnchorsInfo(feat_width, feat_height, info.spatial_scale()));
const TensorShape flatten_shape_deltas(values_per_roi, total_num_anchors);
_deltas_flattened.allocator()->init(
TensorInfo(flatten_shape_deltas, 1, scores_data_type, deltas->info()->quantization_info()));
// Permute and reshape deltas
_memory_group.manage(&_deltas_flattened);
if (!_is_nhwc)
{
_memory_group.manage(&_deltas_permuted);
_permute_deltas.configure(compile_context, deltas, &_deltas_permuted, PermutationVector{2, 0, 1});
_flatten_deltas.configure(compile_context, &_deltas_permuted, &_deltas_flattened);
_deltas_permuted.allocator()->allocate();
}
else
{
_flatten_deltas.configure(compile_context, deltas, &_deltas_flattened);
}
const TensorShape flatten_shape_scores(1, total_num_anchors);
_scores_flattened.allocator()->init(TensorInfo(flatten_shape_scores, 1, scores_data_type, scores_qinfo));
// Permute and reshape scores
_memory_group.manage(&_scores_flattened);
if (!_is_nhwc)
{
_memory_group.manage(&_scores_permuted);
_permute_scores.configure(compile_context, scores, &_scores_permuted, PermutationVector{2, 0, 1});
_flatten_scores.configure(compile_context, &_scores_permuted, &_scores_flattened);
_scores_permuted.allocator()->allocate();
}
else
{
_flatten_scores.configure(compile_context, scores, &_scores_flattened);
}
CLTensor *anchors_to_use = &_all_anchors;
CLTensor *deltas_to_use = &_deltas_flattened;
if (_is_qasymm8)
{
_all_anchors_f32.allocator()->init(TensorInfo(_all_anchors.info()->tensor_shape(), 1, DataType::F32));
_deltas_flattened_f32.allocator()->init(TensorInfo(_deltas_flattened.info()->tensor_shape(), 1, DataType::F32));
_memory_group.manage(&_all_anchors_f32);
_memory_group.manage(&_deltas_flattened_f32);
// Dequantize anchors to float
_dequantize_anchors->configure(compile_context, &_all_anchors, &_all_anchors_f32);
_all_anchors.allocator()->allocate();
anchors_to_use = &_all_anchors_f32;
// Dequantize deltas to float
_dequantize_deltas->configure(compile_context, &_deltas_flattened, &_deltas_flattened_f32);
_deltas_flattened.allocator()->allocate();
deltas_to_use = &_deltas_flattened_f32;
}
// Bounding box transform
_memory_group.manage(&_all_proposals);
BoundingBoxTransformInfo bbox_info(info.im_width(), info.im_height(), 1.f);
_bounding_box_kernel->configure(compile_context, anchors_to_use, &_all_proposals, deltas_to_use, bbox_info);
deltas_to_use->allocator()->allocate();
anchors_to_use->allocator()->allocate();
_all_proposals_to_use = &_all_proposals;
if (_is_qasymm8)
{
_memory_group.manage(&_all_proposals_quantized);
// Requantize all_proposals to QASYMM16 with 0.125 scale and 0 offset
_all_proposals_quantized.allocator()->init(
TensorInfo(_all_proposals.info()->tensor_shape(), 1, DataType::QASYMM16, QuantizationInfo(0.125f, 0)));
_quantize_all_proposals->configure(compile_context, &_all_proposals, &_all_proposals_quantized);
_all_proposals.allocator()->allocate();
_all_proposals_to_use = &_all_proposals_quantized;
}
// The original layer implementation first selects the best pre_nms_topN anchors (thus having a lightweight sort)
// that are then transformed by bbox_transform. The boxes generated are then fed into a non-sorting NMS operation.
// Since we are reusing the NMS layer and we don't implement any CL/sort, we let NMS do the sorting (of all the input)
// and the filtering
const int scores_nms_size = std::min<int>(std::min<int>(post_nms_topN, pre_nms_topN), total_num_anchors);
const float min_size_scaled = info.min_size() * info.im_scale();
_memory_group.manage(&_classes_nms_unused);
_memory_group.manage(&_keeps_nms_unused);
// Note that NMS needs outputs preinitialized.
auto_init_if_empty(*scores_out->info(), TensorShape(scores_nms_size), 1, scores_data_type, scores_qinfo);
auto_init_if_empty(*_proposals_4_roi_values.info(), TensorShape(values_per_roi, scores_nms_size), 1, rois_data_type,
rois_qinfo);
auto_init_if_empty(*num_valid_proposals->info(), TensorShape(1), 1, DataType::U32);
// Initialize temporaries (unused) outputs
_classes_nms_unused.allocator()->init(TensorInfo(TensorShape(scores_nms_size), 1, scores_data_type, scores_qinfo));
_keeps_nms_unused.allocator()->init(*scores_out->info());
// Save the output (to map and unmap them at run)
_scores_out = scores_out;
_num_valid_proposals = num_valid_proposals;
_memory_group.manage(&_proposals_4_roi_values);
_cpp_nms.configure(&_scores_flattened, _all_proposals_to_use, nullptr, scores_out, &_proposals_4_roi_values,
&_classes_nms_unused, nullptr, &_keeps_nms_unused, num_valid_proposals,
BoxNMSLimitInfo(0.0f, info.nms_thres(), scores_nms_size, false, NMSType::LINEAR, 0.5f, 0.001f,
true, min_size_scaled, info.im_width(), info.im_height()));
_keeps_nms_unused.allocator()->allocate();
_classes_nms_unused.allocator()->allocate();
_all_proposals_to_use->allocator()->allocate();
_scores_flattened.allocator()->allocate();
// Add the first column that represents the batch id. This will be all zeros, as we don't support multiple images
_pad_kernel->configure(compile_context, &_proposals_4_roi_values, proposals, PaddingList{{1, 0}});
_proposals_4_roi_values.allocator()->allocate();
}
Status CLGenerateProposalsLayer::validate(const ITensorInfo *scores,
const ITensorInfo *deltas,
const ITensorInfo *anchors,
const ITensorInfo *proposals,
const ITensorInfo *scores_out,
const ITensorInfo *num_valid_proposals,
const GenerateProposalsInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(scores, deltas, anchors, proposals, scores_out, num_valid_proposals);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(scores, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_LAYOUT_NOT_IN(scores, DataLayout::NCHW, DataLayout::NHWC);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(scores, deltas);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(scores, deltas);
const int num_anchors =
scores->dimension(get_data_layout_dimension_index(scores->data_layout(), DataLayoutDimension::CHANNEL));
const int feat_width =
scores->dimension(get_data_layout_dimension_index(scores->data_layout(), DataLayoutDimension::WIDTH));
const int feat_height =
scores->dimension(get_data_layout_dimension_index(scores->data_layout(), DataLayoutDimension::HEIGHT));
const int num_images = scores->dimension(3);
const int total_num_anchors = num_anchors * feat_width * feat_height;
const int values_per_roi = info.values_per_roi();
const bool is_qasymm8 = scores->data_type() == DataType::QASYMM8;
ARM_COMPUTE_RETURN_ERROR_ON(num_images > 1);
if (is_qasymm8)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(anchors, 1, DataType::QSYMM16);
const UniformQuantizationInfo anchors_qinfo = anchors->quantization_info().uniform();
ARM_COMPUTE_RETURN_ERROR_ON(anchors_qinfo.scale != 0.125f);
}
TensorInfo all_anchors_info(
anchors->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
ARM_COMPUTE_RETURN_ON_ERROR(CLComputeAllAnchorsKernel::validate(
anchors, &all_anchors_info, ComputeAnchorsInfo(feat_width, feat_height, info.spatial_scale())));
TensorInfo deltas_permuted_info =
deltas->clone()
->set_tensor_shape(TensorShape(values_per_roi * num_anchors, feat_width, feat_height))
.set_is_resizable(true);
TensorInfo scores_permuted_info =
scores->clone()->set_tensor_shape(TensorShape(num_anchors, feat_width, feat_height)).set_is_resizable(true);
if (scores->data_layout() == DataLayout::NHWC)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(deltas, &deltas_permuted_info);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(scores, &scores_permuted_info);
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(deltas, &deltas_permuted_info, PermutationVector{2, 0, 1}));
ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(scores, &scores_permuted_info, PermutationVector{2, 0, 1}));
}
TensorInfo deltas_flattened_info(
deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(&deltas_permuted_info, &deltas_flattened_info));
TensorInfo scores_flattened_info(
scores->clone()->set_tensor_shape(TensorShape(1, total_num_anchors)).set_is_resizable(true));
TensorInfo proposals_4_roi_values(
deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(&scores_permuted_info, &scores_flattened_info));
TensorInfo *proposals_4_roi_values_to_use = &proposals_4_roi_values;
TensorInfo proposals_4_roi_values_quantized(
deltas->clone()->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors)).set_is_resizable(true));
proposals_4_roi_values_quantized.set_data_type(DataType::QASYMM16)
.set_quantization_info(QuantizationInfo(0.125f, 0));
if (is_qasymm8)
{
TensorInfo all_anchors_f32_info(anchors->clone()
->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors))
.set_is_resizable(true)
.set_data_type(DataType::F32));
ARM_COMPUTE_RETURN_ON_ERROR(CLDequantizationLayer::validate(&all_anchors_info, &all_anchors_f32_info));
TensorInfo deltas_flattened_f32_info(deltas->clone()
->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors))
.set_is_resizable(true)
.set_data_type(DataType::F32));
ARM_COMPUTE_RETURN_ON_ERROR(
CLDequantizationLayer::validate(&deltas_flattened_info, &deltas_flattened_f32_info));
TensorInfo proposals_4_roi_values_f32(deltas->clone()
->set_tensor_shape(TensorShape(values_per_roi, total_num_anchors))
.set_is_resizable(true)
.set_data_type(DataType::F32));
ARM_COMPUTE_RETURN_ON_ERROR(CLBoundingBoxTransformKernel::validate(
&all_anchors_f32_info, &proposals_4_roi_values_f32, &deltas_flattened_f32_info,
BoundingBoxTransformInfo(info.im_width(), info.im_height(), 1.f)));
ARM_COMPUTE_RETURN_ON_ERROR(
CLQuantizationLayer::validate(&proposals_4_roi_values_f32, &proposals_4_roi_values_quantized));
proposals_4_roi_values_to_use = &proposals_4_roi_values_quantized;
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(
CLBoundingBoxTransformKernel::validate(&all_anchors_info, &proposals_4_roi_values, &deltas_flattened_info,
BoundingBoxTransformInfo(info.im_width(), info.im_height(), 1.f)));
}
ARM_COMPUTE_RETURN_ON_ERROR(
CLPadLayerKernel::validate(proposals_4_roi_values_to_use, proposals, PaddingList{{1, 0}}));
if (num_valid_proposals->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(num_valid_proposals->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(num_valid_proposals->dimension(0) > 1);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(num_valid_proposals, 1, DataType::U32);
}
if (proposals->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(proposals->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(proposals->dimension(0) != size_t(values_per_roi) + 1);
ARM_COMPUTE_RETURN_ERROR_ON(proposals->dimension(1) != size_t(total_num_anchors));
if (is_qasymm8)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(proposals, 1, DataType::QASYMM16);
const UniformQuantizationInfo proposals_qinfo = proposals->quantization_info().uniform();
ARM_COMPUTE_RETURN_ERROR_ON(proposals_qinfo.scale != 0.125f);
ARM_COMPUTE_RETURN_ERROR_ON(proposals_qinfo.offset != 0);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(proposals, scores);
}
}
if (scores_out->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(scores_out->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(scores_out->dimension(0) != size_t(total_num_anchors));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(scores_out, scores);
}
return Status{};
}
void CLGenerateProposalsLayer::run_cpp_nms_kernel()
{
// Map inputs
_scores_flattened.map(true);
_all_proposals_to_use->map(true);
// Map outputs
_scores_out->map(CLScheduler::get().queue(), true);
_proposals_4_roi_values.map(CLScheduler::get().queue(), true);
_num_valid_proposals->map(CLScheduler::get().queue(), true);
_keeps_nms_unused.map(true);
_classes_nms_unused.map(true);
// Run nms
_cpp_nms.run();
// Unmap outputs
_keeps_nms_unused.unmap();
_classes_nms_unused.unmap();
_scores_out->unmap(CLScheduler::get().queue());
_proposals_4_roi_values.unmap(CLScheduler::get().queue());
_num_valid_proposals->unmap(CLScheduler::get().queue());
// Unmap inputs
_scores_flattened.unmap();
_all_proposals_to_use->unmap();
}
void CLGenerateProposalsLayer::run()
{
// Acquire all the temporaries
MemoryGroupResourceScope scope_mg(_memory_group);
// Compute all the anchors
CLScheduler::get().enqueue(*_compute_anchors_kernel, false);
// Transpose and reshape the inputs
if (!_is_nhwc)
{
_permute_deltas.run();
_permute_scores.run();
}
_flatten_deltas.run();
_flatten_scores.run();
if (_is_qasymm8)
{
_dequantize_anchors->run();
_dequantize_deltas->run();
}
// Build the boxes
CLScheduler::get().enqueue(*_bounding_box_kernel, false);
if (_is_qasymm8)
{
_quantize_all_proposals->run();
}
// Non maxima suppression
run_cpp_nms_kernel();
// Add dummy batch indexes
CLScheduler::get().enqueue(*_pad_kernel, true);
}
} // namespace arm_compute