blob: f325bb3f3759036fd23271226e73acbfbfd399a0 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_TEST_UTILS_H__
#define __ARM_COMPUTE_TEST_UTILS_H__
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/FixedPoint.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "support/ToolchainSupport.h"
#include "tests/validation/half.h"
#include <cmath>
#include <cstddef>
#include <limits>
#include <memory>
#include <random>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>
namespace arm_compute
{
namespace test
{
/** Round floating-point value with half value rounding to positive infinity.
*
* @param[in] value floating-point value to be rounded.
*
* @return Floating-point value of rounded @p value.
*/
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline T round_half_up(T value)
{
return std::floor(value + 0.5f);
}
/** Round floating-point value with half value rounding to nearest even.
*
* @param[in] value floating-point value to be rounded.
* @param[in] epsilon precision.
*
* @return Floating-point value of rounded @p value.
*/
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value>::type>
inline T round_half_even(T value, T epsilon = std::numeric_limits<T>::epsilon())
{
T positive_value = std::abs(value);
T ipart = 0;
std::modf(positive_value, &ipart);
// If 'value' is exactly halfway between two integers
if(std::abs(positive_value - (ipart + 0.5f)) < epsilon)
{
// If 'ipart' is even then return 'ipart'
if(std::fmod(ipart, 2.f) < epsilon)
{
return support::cpp11::copysign(ipart, value);
}
// Else return the nearest even integer
return support::cpp11::copysign(std::ceil(ipart + 0.5f), value);
}
// Otherwise use the usual round to closest
return support::cpp11::copysign(support::cpp11::round(positive_value), value);
}
namespace traits
{
// *INDENT-OFF*
// clang-format off
template <typename T> struct promote { };
template <> struct promote<uint8_t> { using type = uint16_t; };
template <> struct promote<int8_t> { using type = int16_t; };
template <> struct promote<uint16_t> { using type = uint32_t; };
template <> struct promote<int16_t> { using type = int32_t; };
template <> struct promote<uint32_t> { using type = uint64_t; };
template <> struct promote<int32_t> { using type = int64_t; };
template <> struct promote<float> { using type = float; };
template <> struct promote<half_float::half> { using type = half_float::half; };
template <typename T>
using promote_t = typename promote<T>::type;
template <typename T>
using make_signed_conditional_t = typename std::conditional<std::is_integral<T>::value, std::make_signed<T>, std::common_type<T>>::type;
// clang-format on
// *INDENT-ON*
}
/** Look up the format corresponding to a channel.
*
* @param[in] channel Channel type.
*
* @return Format that contains the given channel.
*/
inline Format get_format_for_channel(Channel channel)
{
switch(channel)
{
case Channel::R:
case Channel::G:
case Channel::B:
return Format::RGB888;
default:
throw std::runtime_error("Unsupported channel");
}
}
/** Return the format of a channel.
*
* @param[in] channel Channel type.
*
* @return Format of the given channel.
*/
inline Format get_channel_format(Channel channel)
{
switch(channel)
{
case Channel::R:
case Channel::G:
case Channel::B:
return Format::U8;
default:
throw std::runtime_error("Unsupported channel");
}
}
/** Base case of foldl.
*
* @return value.
*/
template <typename F, typename T>
inline T foldl(F &&, const T &value)
{
return value;
}
/** Base case of foldl.
*
* @return func(value1, value2).
*/
template <typename F, typename T, typename U>
inline auto foldl(F &&func, T &&value1, U &&value2) -> decltype(func(value1, value2))
{
return func(value1, value2);
}
/** Fold left.
*
* @param[in] func Binary function to be called.
* @param[in] initial Initial value.
* @param[in] value Argument passed to the function.
* @param[in] values Remaining arguments.
*/
template <typename F, typename I, typename T, typename... Vs>
inline I foldl(F &&func, I &&initial, T &&value, Vs &&... values)
{
return foldl(std::forward<F>(func), func(std::forward<I>(initial), std::forward<T>(value)), std::forward<Vs>(values)...);
}
/** Create a valid region based on tensor shape, border mode and border size
*
* @param[in] shape Shape used as size of the valid region.
* @param[in] border_undefined (Optional) Boolean indicating if the border mode is undefined.
* @param[in] border_size (Optional) Border size used to specify the region to exclude.
*
* @return A valid region starting at (0, 0, ...) with size of @p shape if @p border_undefined is false; otherwise
* return A valid region starting at (@p border_size.left, @p border_size.top, ...) with reduced size of @p shape.
*/
inline ValidRegion shape_to_valid_region(TensorShape shape, bool border_undefined = false, BorderSize border_size = BorderSize(0))
{
Coordinates anchor;
anchor.set_num_dimensions(shape.num_dimensions());
if(border_undefined)
{
ARM_COMPUTE_ERROR_ON(shape.num_dimensions() < 2);
anchor.set(0, border_size.left);
anchor.set(1, border_size.top);
const int valid_shape_x = std::max(0, static_cast<int>(shape.x()) - static_cast<int>(border_size.left) - static_cast<int>(border_size.right));
const int valid_shape_y = std::max(0, static_cast<int>(shape.y()) - static_cast<int>(border_size.top) - static_cast<int>(border_size.bottom));
shape.set(0, valid_shape_x);
shape.set(1, valid_shape_y);
}
return ValidRegion(std::move(anchor), std::move(shape));
}
/** Write the value after casting the pointer according to @p data_type.
*
* @warning The type of the value must match the specified data type.
*
* @param[out] ptr Pointer to memory where the @p value will be written.
* @param[in] value Value that will be written.
* @param[in] data_type Data type that will be written.
*/
template <typename T>
void store_value_with_data_type(void *ptr, T value, DataType data_type)
{
switch(data_type)
{
case DataType::U8:
*reinterpret_cast<uint8_t *>(ptr) = value;
break;
case DataType::S8:
case DataType::QS8:
*reinterpret_cast<int8_t *>(ptr) = value;
break;
case DataType::U16:
*reinterpret_cast<uint16_t *>(ptr) = value;
break;
case DataType::S16:
case DataType::QS16:
*reinterpret_cast<int16_t *>(ptr) = value;
break;
case DataType::U32:
*reinterpret_cast<uint32_t *>(ptr) = value;
break;
case DataType::S32:
*reinterpret_cast<int32_t *>(ptr) = value;
break;
case DataType::U64:
*reinterpret_cast<uint64_t *>(ptr) = value;
break;
case DataType::S64:
*reinterpret_cast<int64_t *>(ptr) = value;
break;
case DataType::F16:
*reinterpret_cast<half_float::half *>(ptr) = value;
break;
case DataType::F32:
*reinterpret_cast<float *>(ptr) = value;
break;
case DataType::F64:
*reinterpret_cast<double *>(ptr) = value;
break;
case DataType::SIZET:
*reinterpret_cast<size_t *>(ptr) = value;
break;
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
/** Saturate a value of type T against the numeric limits of type U.
*
* @param[in] val Value to be saturated.
*
* @return saturated value.
*/
template <typename U, typename T>
T saturate_cast(T val)
{
if(val > static_cast<T>(std::numeric_limits<U>::max()))
{
val = static_cast<T>(std::numeric_limits<U>::max());
}
if(val < static_cast<T>(std::numeric_limits<U>::lowest()))
{
val = static_cast<T>(std::numeric_limits<U>::lowest());
}
return val;
}
/** Find the signed promoted common type.
*/
template <typename... T>
struct common_promoted_signed_type
{
using common_type = typename std::common_type<T...>::type;
using promoted_type = traits::promote_t<common_type>;
using intermediate_type = typename traits::make_signed_conditional_t<promoted_type>::type;
};
/** Convert a linear index into n-dimensional coordinates.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] index Linear index specifying the i-th element.
*
* @return n-dimensional coordinates.
*/
inline Coordinates index2coord(const TensorShape &shape, int index)
{
int num_elements = shape.total_size();
ARM_COMPUTE_ERROR_ON_MSG(index < 0 || index >= num_elements, "Index has to be in [0, num_elements]");
ARM_COMPUTE_ERROR_ON_MSG(num_elements == 0, "Cannot create coordinate from empty shape");
Coordinates coord{ 0 };
for(int d = shape.num_dimensions() - 1; d >= 0; --d)
{
num_elements /= shape[d];
coord.set(d, index / num_elements);
index %= num_elements;
}
return coord;
}
/** Linearise the given coordinate.
*
* Transforms the given coordinate into a linear offset in terms of
* elements.
*
* @param[in] shape Shape of the n-dimensional tensor.
* @param[in] coord The to be converted coordinate.
*
* @return Linear offset to the element.
*/
inline int coord2index(const TensorShape &shape, const Coordinates &coord)
{
ARM_COMPUTE_ERROR_ON_MSG(shape.total_size() == 0, "Cannot get index from empty shape");
ARM_COMPUTE_ERROR_ON_MSG(coord.num_dimensions() == 0, "Cannot get index of empty coordinate");
int index = 0;
int dim_size = 1;
for(unsigned int i = 0; i < coord.num_dimensions(); ++i)
{
index += coord[i] * dim_size;
dim_size *= shape[i];
}
return index;
}
/** Check if Coordinates dimensionality can match the respective shape one.
*
* @param coords Coordinates
* @param shape Shape to match dimensionality
*
* @return True if Coordinates can match the dimensionality of the shape else false.
*/
inline bool match_shape(Coordinates &coords, const TensorShape &shape)
{
auto check_nz = [](int i)
{
return i != 0;
};
const int coords_dims = coords.num_dimensions();
const int shape_dims = shape.num_dimensions();
// Increase coordinates scenario
if(coords_dims < shape_dims)
{
coords.set_num_dimensions(shape_dims);
return true;
}
// Decrease coordinates scenario
if(coords_dims > shape_dims && !std::any_of(coords.begin() + shape_dims, coords.end(), check_nz))
{
coords.set_num_dimensions(shape_dims);
return true;
}
return (coords_dims == shape_dims);
}
/** Check if a coordinate is within a valid region */
inline bool is_in_valid_region(const ValidRegion &valid_region, Coordinates coord)
{
const bool match = match_shape(coord, valid_region.shape);
if(!match)
{
return false;
}
for(int d = 0; static_cast<size_t>(d) < coord.num_dimensions(); ++d)
{
if(coord[d] < valid_region.start(d) || coord[d] >= valid_region.end(d))
{
return false;
}
}
return true;
}
/** Create and initialize a tensor of the given type.
*
* @param[in] shape Tensor shape.
* @param[in] data_type Data type.
* @param[in] num_channels (Optional) Number of channels.
* @param[in] fixed_point_position (Optional) Number of fractional bits.
*
* @return Initialized tensor of given type.
*/
template <typename T>
inline T create_tensor(const TensorShape &shape, DataType data_type, int num_channels = 1, int fixed_point_position = 0)
{
T tensor;
tensor.allocator()->init(TensorInfo(shape, num_channels, data_type, fixed_point_position));
return tensor;
}
/** Create a vector of random ROIs.
*
* @param[in] shape The shape of the input tensor.
* @param[in] pool_info The ROI pooling information.
* @param[in] num_rois The number of ROIs to be created.
* @param[in] seed The random seed to be used.
*
* @return A vector that contains the requested number of random ROIs
*/
inline std::vector<ROI> generate_random_rois(const TensorShape &shape, const ROIPoolingLayerInfo &pool_info, unsigned int num_rois, std::random_device::result_type seed)
{
ARM_COMPUTE_ERROR_ON((pool_info.pooled_width() < 4) || (pool_info.pooled_height() < 4));
std::vector<ROI> rois;
std::mt19937 gen(seed);
const int pool_width = pool_info.pooled_width();
const int pool_height = pool_info.pooled_height();
const float roi_scale = pool_info.spatial_scale();
// Calculate distribution bounds
const auto scaled_width = static_cast<int>((shape.x() / roi_scale) / pool_width);
const auto scaled_height = static_cast<int>((shape.y() / roi_scale) / pool_height);
const auto min_width = static_cast<int>(pool_width / roi_scale);
const auto min_height = static_cast<int>(pool_height / roi_scale);
// Create distributions
std::uniform_int_distribution<int> dist_batch(0, shape[3] - 1);
std::uniform_int_distribution<int> dist_x(0, scaled_width);
std::uniform_int_distribution<int> dist_y(0, scaled_height);
std::uniform_int_distribution<int> dist_w(min_width, std::max(min_width, (pool_width - 2) * scaled_width));
std::uniform_int_distribution<int> dist_h(min_height, std::max(min_height, (pool_height - 2) * scaled_height));
for(unsigned int r = 0; r < num_rois; ++r)
{
ROI roi;
roi.batch_idx = dist_batch(gen);
roi.rect.x = dist_x(gen);
roi.rect.y = dist_y(gen);
roi.rect.width = dist_w(gen);
roi.rect.height = dist_h(gen);
rois.push_back(roi);
}
return rois;
}
template <typename T, typename ArrayAccessor_T>
inline void fill_array(ArrayAccessor_T &&array, const std::vector<T> &v)
{
array.resize(v.size());
std::memcpy(array.buffer(), v.data(), v.size() * sizeof(T));
}
/** Obtain numpy type string from DataType.
*
* @param[in] data_type Data type.
*
* @return numpy type string.
*/
inline std::string get_typestring(DataType data_type)
{
// Check endianness
const unsigned int i = 1;
const char *c = reinterpret_cast<const char *>(&i);
std::string endianness;
if(*c == 1)
{
endianness = std::string("<");
}
else
{
endianness = std::string(">");
}
const std::string no_endianness("|");
switch(data_type)
{
case DataType::U8:
return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t));
case DataType::S8:
return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t));
case DataType::U16:
return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t));
case DataType::S16:
return endianness + "i" + support::cpp11::to_string(sizeof(int16_t));
case DataType::U32:
return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t));
case DataType::S32:
return endianness + "i" + support::cpp11::to_string(sizeof(int32_t));
case DataType::U64:
return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t));
case DataType::S64:
return endianness + "i" + support::cpp11::to_string(sizeof(int64_t));
case DataType::F32:
return endianness + "f" + support::cpp11::to_string(sizeof(float));
case DataType::F64:
return endianness + "f" + support::cpp11::to_string(sizeof(double));
case DataType::SIZET:
return endianness + "u" + support::cpp11::to_string(sizeof(size_t));
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
}
} // namespace test
} // namespace arm_compute
#endif /* __ARM_COMPUTE_TEST_UTILS_H__ */