Remove padding from ClPool2dKernel NCHW

- Simplify NCHW kernel structure by removing old optimized paths
- Merge quantized with fp kernels

Resolve COMPMID-4722

Signed-off-by: Giorgio Arena <giorgio.arena@arm.com>
Change-Id: I79016b119619aed6a6193295601cd6517f14b88c
Reviewed-on: https://review.mlplatform.org/c/ml/ComputeLibrary/+/6183
Comments-Addressed: Arm Jenkins <bsgcomp@arm.com>
Tested-by: Arm Jenkins <bsgcomp@arm.com>
Reviewed-by: Gian Marco Iodice <gianmarco.iodice@arm.com>
diff --git a/SConscript b/SConscript
index 62ff266..df8f33a 100644
--- a/SConscript
+++ b/SConscript
@@ -291,7 +291,6 @@
                        'src/core/CL/cl_kernels/common/quantization_layer.cl',
                        'src/core/CL/cl_kernels/common/range.cl',
                        'src/core/CL/cl_kernels/common/reduction_operation.cl',
-                       'src/core/CL/cl_kernels/common/pooling_layer.cl',
                        'src/core/CL/cl_kernels/common/reshape_layer.cl',
                        'src/core/CL/cl_kernels/common/convolution_layer.cl',
                        'src/core/CL/cl_kernels/common/reverse.cl',
@@ -322,7 +321,6 @@
                     'src/core/CL/cl_kernels/nchw/normalize_planar_yuv_layer.cl',
                     'src/core/CL/cl_kernels/nchw/normalize_planar_yuv_layer_quantized.cl',
                     'src/core/CL/cl_kernels/nchw/pooling_layer.cl',
-                    'src/core/CL/cl_kernels/nchw/pooling_layer_quantized.cl',
                     'src/core/CL/cl_kernels/nchw/prior_box_layer.cl',
                     'src/core/CL/cl_kernels/nchw/remap.cl',
                     'src/core/CL/cl_kernels/nchw/reorg_layer.cl',
diff --git a/src/core/CL/cl_kernels/common/pooling_layer.cl b/src/core/CL/cl_kernels/common/pooling_layer.cl
deleted file mode 100644
index 5122f2c..0000000
--- a/src/core/CL/cl_kernels/common/pooling_layer.cl
+++ /dev/null
@@ -1,390 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "helpers.h"
-#include "repeat.h"
-#include "tile_helpers.h"
-
-#if defined(POOL_AVG) || defined(POOL_L2)
-#define POOL_OP(x, y) ((x) + (y))
-#else /* defined(POOL_AVG) || defined(POOL_L2) */
-#define POOL_OP(x, y) (fmax((x), (y)))
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
-#define POW2_OP(x, vec_size) ((x) * (x))
-#else /* defined(POOL_L2) */
-#define POW2_OP(x, vec_size) (x)
-#endif /* defined(POOL_L2) */
-
-#define DIV_OP(x, y) (x * (1.f / y))
-#define SQRT_OP(x) sqrt((x))
-
-#if STRIDE_X == 1
-#define POOLING3x3(res, input, output) POOLING3x3_STRIDE1(res, input, output)
-#elif STRIDE_X == 2 /* STRIDE_X == 1 */
-#define POOLING3x3(res, input, output) POOLING3x3_STRIDE2(res, input, output)
-#elif STRIDE_X == 3 /* STRIDE_X not equals 1 or 2 */
-#define POOLING3x3(res, input, output) POOLING3x3_STRIDE3(res, input, output)
-#endif /* STRIDE_X == 3 */
-
-#if defined(FP_MIXED_PRECISION)
-#define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n))
-#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) \
-    CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n)
-#else /* defined(FP_MIXED_PRECISION) */
-#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr)
-#endif /* defined(FP_MIXED_PRECISION) */
-
-#define POOLING3x3_STRIDE1(res, input, output)                                                                                                       \
-    ({                                                                                                                                               \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
-        data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));                                   \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 2)                                                                                                              \
-        data01 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 4);                               \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
-        data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));                                   \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 2)                                                                                                              \
-        data11 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 4);                               \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
-        data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));                                   \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 2)                                                                                                              \
-        data21 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 4);                               \
-        data00 = POW2_OP(data00, 4);                                                                                                                 \
-        data01 = POW2_OP(data01, 2);                                                                                                                 \
-        data10 = POW2_OP(data10, 4);                                                                                                                 \
-        data11 = POW2_OP(data11, 2);                                                                                                                 \
-        data20 = POW2_OP(data20, 4);                                                                                                                 \
-        data21 = POW2_OP(data21, 2);                                                                                                                 \
-        \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
-        values00 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data00.s01212323);                                                                              \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
-        values01 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data01.s0, data00.s3, data01.s01);                                                              \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
-        values10 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data10.s01212323);                                                                              \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
-        values11 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data11.s0, data10.s3, data11.s01);                                                              \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
-        values20 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data20.s01212323);                                                                              \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
-        values21 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data21.s0, data20.s3, data21.s01);                                                              \
-        \
-        values00 = POOL_OP(values00, values10);                                                                                                      \
-        values01 = POOL_OP(values01, values11);                                                                                                      \
-        values00 = POOL_OP(values00, values20);                                                                                                      \
-        values01 = POOL_OP(values01, values21);                                                                                                      \
-        \
-        res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s147, values01.s2)); \
-        res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s25, values01.s03));                                                           \
-    })
-
-#define POOLING3x3_STRIDE2(res, input, output)                                                                                                       \
-    ({                                                                                                                                               \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
-        data00               = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));                     \
-        ACC_DATA_TYPE data01 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8));                                       \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
-        data10               = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));                     \
-        ACC_DATA_TYPE data11 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8));                                       \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
-        data20               = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));                     \
-        ACC_DATA_TYPE data21 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8));                                       \
-        data00               = POW2_OP(data00, 8);                                                                                                   \
-        data01               = POW2_OP(data01, 1);                                                                                                   \
-        data10               = POW2_OP(data10, 8);                                                                                                   \
-        data11               = POW2_OP(data11, 1);                                                                                                   \
-        data20               = POW2_OP(data20, 8);                                                                                                   \
-        data21               = POW2_OP(data21, 1);                                                                                                   \
-        \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
-        values00 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data00.s01223445);                                                                              \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
-        values01 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s667, data01);                                                                           \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
-        values10 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data10.s01223445);                                                                              \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
-        values11 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data10.s667, data11);                                                                           \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                              \
-        values20 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data20.s01223445);                                                                              \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                              \
-        values21 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data20.s667, data21);                                                                           \
-        \
-        values00 = POOL_OP(values00, values10);                                                                                                      \
-        values01 = POOL_OP(values01, values11);                                                                                                      \
-        values00 = POOL_OP(values00, values20);                                                                                                      \
-        values01 = POOL_OP(values01, values21);                                                                                                      \
-        \
-        res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s147, values01.s2)); \
-        res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s25, values01.s03));                                                           \
-    })
-
-#define POOLING3x3_STRIDE3(res, input, output)                                                                                               \
-    ({                                                                                                                                       \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                      \
-        data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));                           \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                      \
-        data01 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8);                       \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                      \
-        data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));                           \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                      \
-        data11 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8);                       \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 8)                                                                                                      \
-        data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));                           \
-        VEC_DATA_TYPE(ACC_DATA_TYPE, 4)                                                                                                      \
-        data21 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8);                       \
-        data00 = POW2_OP(data00, 8);                                                                                                         \
-        data01 = POW2_OP(data01, 4);                                                                                                         \
-        data10 = POW2_OP(data10, 8);                                                                                                         \
-        data11 = POW2_OP(data11, 4);                                                                                                         \
-        data20 = POW2_OP(data20, 8);                                                                                                         \
-        data21 = POW2_OP(data21, 4);                                                                                                         \
-        \
-        data00 = POOL_OP(data00, data10);                                                                                                    \
-        data01 = POOL_OP(data01, data11);                                                                                                    \
-        data00 = POOL_OP(data00, data20);                                                                                                    \
-        data01 = POOL_OP(data01, data21);                                                                                                    \
-        \
-        res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s036, data01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s147, data01.s2)); \
-        res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s25, data01.s03));                                                       \
-    })
-
-ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
-                                  const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
-    int       start_x = get_global_id(0) * stride_x - pad_x;
-    int       start_y = get_global_id(1) * stride_y - pad_y;
-    const int end_x   = min(start_x + pool_size_x, upper_bound_w);
-    const int end_y   = min(start_y + pool_size_y, upper_bound_h);
-#if defined(EXCLUDE_PADDING)
-    start_x = max(0, start_x);
-    start_y = max(0, start_y);
-#endif /* defined(EXCLUDE_PADDING) */
-    return ((end_y - start_y) * (end_x - start_x));
-}
-
-/** Performs a pooling function of pool size equal to 2.
- *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
- * @note In case of average pooling the following information must be passed at compile time:
- *       -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed.
- *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
- *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
- *
- * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
- * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
- * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
- * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
- * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
- * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
- * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
- * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
- */
-__kernel void pooling_layer_2(
-    TENSOR3D_DECLARATION(input),
-    TENSOR3D_DECLARATION(output))
-{
-    // Get pixels pointer
-    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
-    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
-
-    // Load data
-    VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
-    data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));
-    VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
-    data1 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
-
-#if defined(POOL_L2)
-    // Raise to power of 2 for L2 Pooling
-    data0 = POW2_OP(data0, 2);
-    data1 = POW2_OP(data1, 2);
-#endif /* defined(POOL_L2) */
-
-    // Perform calculations
-    data0             = POOL_OP(data0, data1);
-    ACC_DATA_TYPE res = POOL_OP(data0.s0, data0.s1);
-
-#if defined(POOL_AVG) || defined(POOL_L2)
-    // Divide by pool region in case of average or l2 pooling
-    res = DIV_OP(res, calculate_avg_scale(2, 2, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
-    // Take square root of the result in L2 pooling
-    res = SQRT_OP(res);
-#endif /* defined(POOL_L2) */
-
-    // Store result
-    *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
-}
-
-/** Performs a pooling function of pool size equal to 3
- *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
- * @note In case of average pooling the following information must be passed at compile time:
- *       -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed.
- *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
- *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
- *
- * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
- * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
- * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
- * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
- * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
- * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
- * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
- * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
- */
-__kernel void pooling_layer_3(
-    TENSOR3D_DECLARATION(input),
-    TENSOR3D_DECLARATION(output))
-{
-    // Get pixels pointer
-    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
-    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
-
-    // Load data
-    VEC_DATA_TYPE(ACC_DATA_TYPE, 3)
-    data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));
-    VEC_DATA_TYPE(ACC_DATA_TYPE, 3)
-    data1 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
-    VEC_DATA_TYPE(ACC_DATA_TYPE, 3)
-    data2 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
-
-#if defined(POOL_L2)
-    // Raise to power of 2 for L2 Pooling
-    data0 = POW2_OP(data0, 3);
-    data1 = POW2_OP(data1, 3);
-    data2 = POW2_OP(data2, 3);
-#endif /* defined(POOL_L2) */
-
-    // Perform calculations
-    data0             = POOL_OP(data0, data1);
-    data0             = POOL_OP(data0, data2);
-    ACC_DATA_TYPE res = POOL_OP(POOL_OP(data0.s0, data0.s1), data0.s2);
-
-#if defined(POOL_AVG) || defined(POOL_L2)
-    // Divide by pool region in case of average pooling
-    res = DIV_OP(res, calculate_avg_scale(3, 3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
-    // Take square root of the result in L2 pooling
-    res = SQRT_OP(res);
-#endif /* defined(POOL_L2) */
-
-    // Store result
-    *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
-}
-
-#if defined(POOLING3x3)
-
-#define CONVERT_OP(data_type) convert_##data_type##4
-#define CONVERT_VECTOR4(data_type) CONVERT_OP(data_type)
-
-VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
-calculate_avg_scale4(const int pool_size, const int upper_bound_w, const int upper_bound_h,
-                     const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
-    int4       start_x = ((int4)get_global_id(0) * 4 + (int4)(0, 1, 2, 3)) * (int4)stride_x - (int4)pad_x;
-    int        start_y = get_global_id(1) * stride_y - pad_y;
-    const int4 end_x   = min(start_x + (int4)pool_size, (int4)upper_bound_w);
-    const int  end_y   = min(start_y + pool_size, upper_bound_h);
-#if defined(EXCLUDE_PADDING)
-    start_x = max((int4)0, start_x);
-    start_y = max(0, start_y);
-#endif /* defined(EXCLUDE_PADDING) */
-    return (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(1.f) / CONVERT_VECTOR4(ACC_DATA_TYPE)(((int4)(end_y - start_y)) * (end_x - start_x));
-}
-
-/** Performs an optimized pooling function of pool size equal to 3 when the stride_x is less equal than 3
- *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
- * @note In case of average pooling the following information must be passed at compile time:
- *       -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed.
- *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
- *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
- *
- * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
- * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
- * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
- * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
- * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
- * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
- * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
- * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
- */
-__kernel void pooling_layer_optimized_3(
-    TENSOR3D_DECLARATION(input),
-    TENSOR3D_DECLARATION(output))
-{
-    // Get pixels pointer
-    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
-    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
-
-    VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
-    res;
-
-    // Perform pooling 3x3 for 4 output elements
-    POOLING3x3(res, input, output);
-
-#if defined(POOL_AVG) || defined(POOL_L2)
-    // Divide by pool region in case of average pooling
-    res *= calculate_avg_scale4(3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y);
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
-    // Take square root of the result in L2 pooling
-    res = SQRT_OP(res);
-#endif /* defined(POOL_L2) */
-
-    vstore4(CONVERT(res, VEC_DATA_TYPE(DATA_TYPE, 4)), 0, (__global DATA_TYPE *)output.ptr);
-}
-#endif // defined(POOLING3x3)
diff --git a/src/core/CL/cl_kernels/nchw/pooling_layer.cl b/src/core/CL/cl_kernels/nchw/pooling_layer.cl
index 790ddb3..15ad116 100644
--- a/src/core/CL/cl_kernels/nchw/pooling_layer.cl
+++ b/src/core/CL/cl_kernels/nchw/pooling_layer.cl
@@ -22,13 +22,15 @@
  * SOFTWARE.
  */
 #include "helpers.h"
-#include "repeat.h"
-#include "tile_helpers.h"
 
 #if defined(POOL_AVG) || defined(POOL_L2)
 #define POOL_OP(x, y) ((x) + (y))
 #else /* defined(POOL_AVG) || defined(POOL_L2) */
+#if defined(QUANTIZED)
+#define POOL_OP(x, y) (max((x), (y)))
+#else // defined(QUANTIZED)
 #define POOL_OP(x, y) (fmax((x), (y)))
+#endif // defined(QUANTIZED)
 #endif /* defined(POOL_AVG) || defined(POOL_L2) */
 
 #if defined(POOL_L2)
@@ -40,13 +42,12 @@
 #define DIV_OP(x, y) (x * (1.f / y))
 #define SQRT_OP(x) sqrt((x))
 
-#if defined(FP_MIXED_PRECISION)
+#if defined(FP_MIXED_PRECISION) || defined(QUANTIZED)
 #define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n))
-#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) \
-    CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n)
-#else /* defined(FP_MIXED_PRECISION) */
+#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n)
+#else /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/
 #define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr)
-#endif /* defined(FP_MIXED_PRECISION) */
+#endif /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/
 
 ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
                                   const int pad_x, const int pad_y, const int stride_x, const int stride_y)
@@ -66,7 +67,7 @@
 
 /** Performs a pooling function of pool size equal to N  (NCHW)
  *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
+ * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32/QASYMM8;
  * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
  * @note In case of average pooling the following information must be passed at compile time:
  *       -DPOOL_AVG must be provided otherwise max pooling will be performed.
@@ -75,59 +76,93 @@
  *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
  * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
  *
- * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
- * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
- * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
- * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
- * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
- * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
- * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
- * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in]  src_ptr                           Pointer to the source tensor. Supported data types: F16/F32/QASYMM8
+ * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
+ * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
+ * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
+ * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  dst_stride_z                      Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
  */
 __kernel void pooling_layer_MxN_nchw(
-    TENSOR3D_DECLARATION(input),
-    TENSOR3D_DECLARATION(output))
+    TENSOR3D_DECLARATION(src),
+    TENSOR3D_DECLARATION(dst))
 {
-    // Get pixels pointer
-    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
-    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
+    int id0 = get_global_id(0);
+    int id1 = get_global_id(1);
+    int id2 = get_global_id(2);
+
+    int x_coords = (id0 * STRIDE_X) - PAD_X;
+    int y_coords = (id1 * STRIDE_Y) - PAD_Y;
+
+    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + y_coords * (int)src_stride_y + id2 * src_stride_z;
 
     VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
     vdata               = INITIAL_VALUE;
     ACC_DATA_TYPE sdata = INITIAL_VALUE;
 
-    // Load data
-    for(int y = 0; y < POOL_SIZE_Y; y++)
-    {
-        int x = 0;
-        for(; x <= ((int)POOL_SIZE_X - 8); x += 8)
-        {
-            VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
-            data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0));
-#if defined(POOL_L2)
-            // Raise to power of 2 for L2 Pooling
-            data0 *= data0;
-#endif /* defined(POOL_L2) */
-            vdata = POOL_OP(vdata, data0);
-        }
+    const int end_x = min((int)POOL_SIZE_X, (int)(SRC_WIDTH - x_coords));
+    const int end_y = min((int)POOL_SIZE_Y, (int)(SRC_HEIGHT - y_coords));
 
-        // Leftover
-        for(; x < (int)POOL_SIZE_X; ++x)
+    // Load data
+    for(int y = 0; y < end_y; ++y)
+    {
+        if((y_coords + y) >= 0)
         {
-            ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0)));
+            int x = 0;
+            for(; x <= (end_x - 8); x += 8)
+            {
+                int8 src_x = (int8)(x_coords + x) + VEC_OFFS(int, 8);
+#if defined(POOL_AVG) || defined(POOL_L2)
+                SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
+                cond_x = CONVERT(src_x < 0, SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8));
+                src_x  = clamp(src_x, (int8)0, (int8)(SRC_WIDTH - 1));
+                VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
+                data0 = select(VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y)), (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))0, REVERSE(cond_x, 8));
+#else  // defined(POOL_AVG) || defined(POOL_L2)
+                src_x = clamp(src_x, 0, SRC_WIDTH - 1);
+                VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
+                data0               = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y));
+#endif // defined(POOL_AVG) || defined(POOL_L2
+
 #if defined(POOL_L2)
-            // Raise to power of 2 for L2 Pooling
-            data0 *= data0;
+                // Raise to power of 2 for L2 Pooling
+                data0 *= data0;
 #endif /* defined(POOL_L2) */
-            sdata = POOL_OP(sdata, data0);
+
+                vdata = POOL_OP(vdata, data0);
+            }
+
+            // Leftover
+            for(; x < end_x; ++x)
+            {
+                int src_x = x_coords + x;
+#if defined(POOL_AVG) || defined(POOL_L2)
+                SELECT_DATA_TYPE(ACC_DATA_TYPE)
+                cond_x              = (src_x < 0);
+                src_x               = clamp(src_x, 0, SRC_WIDTH - 1);
+                ACC_DATA_TYPE data0 = select((ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y))), (ACC_DATA_TYPE)0, cond_x);
+#else  // defined(POOL_AVG) || defined(POOL_L2)
+                src_x               = clamp(src_x, 0, SRC_WIDTH - 1);
+                ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y)));
+#endif // defined(POOL_AVG) || defined(POOL_L2)
+
+#if defined(POOL_L2)
+                // Raise to power of 2 for L2 Pooling
+                data0 *= data0;
+#endif /* defined(POOL_L2) */
+
+                sdata = POOL_OP(sdata, data0);
+            }
         }
     }
 
@@ -144,76 +179,61 @@
     res = DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
 #endif /* defined(POOL_AVG) || defined(POOL_L2) */
 
+#if defined(QUANTIZED)
+
+    DATA_TYPE result_q8 = CONVERT(res, DATA_TYPE);
+
+#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
+
+    const float result_f32   = convert_float(result_q8);
+    const float input_offset = (float)OFFSET_IN1;
+    const float input_scale  = (float)SCALE_IN1;
+    const float scale_out    = (float)SCALE_OUT;
+    const float offset_out   = (float)OFFSET_OUT;
+    const float in_f32       = (result_f32 - input_offset) * input_scale;
+    const float out_f32      = in_f32 / scale_out + offset_out;
+    result_q8                = CONVERT_SAT(convert_int_rte(out_f32), DATA_TYPE);
+
+#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
+
+    *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = result_q8;
+
+#else // defined(QUANTIZED)
+
 #if defined(POOL_L2)
     // Take square root of the result in L2 pooling
     res = SQRT_OP(res);
 #endif /* defined(POOL_L2) */
 
     // Store result
-    *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
+    *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = (DATA_TYPE)res;
+#endif // defined(QUANTIZED)
 }
 #endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
 
-#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
-
-inline void offset_no_padding_nchw(const Tensor3D *input, uint *offset_top, uint *offset_bottom)
-{
-    const int pad_horiz = PAD_TENSOR_LEFT + PAD_TENSOR_RIGHT;
-    const int pad_vert  = PAD_TENSOR_TOP + PAD_TENSOR_BOTTOM;
-
-    const int x = get_global_id(0) * STRIDE_X;
-    const int y = get_global_id(1) * STRIDE_Y;
-    const int z = get_global_id(2);
-
-    //x axis: width, y axis: height, z axis: component
-    const uint padded_offset = input->offset_first_element_in_bytes
-                               + x * input->stride_x
-                               + y * input->stride_y
-                               + z * input->stride_z;
-
-    const uint offset_base = padded_offset
-                             - y * pad_horiz * sizeof(DATA_TYPE)                                               /* Horizontal padding for each row */
-                             - PAD_TENSOR_TOP * input->stride_y                                                /* top padding */
-                             - z * MAX_HEIGHT * pad_horiz * sizeof(DATA_TYPE) - z * pad_vert * input->stride_y /* Z plane padding */
-                             - PAD_TENSOR_LEFT * sizeof(DATA_TYPE);
-
-#if defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT)
-    *offset_top = (uint)((offset_base / sizeof(DATA_TYPE)) % (TENSOR_CHANNEL * TENSOR_WIDTH * TENSOR_HEIGHT));
-#else  /* defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT) */
-    *offset_top = (uint)(offset_base / sizeof(DATA_TYPE));
-#endif /* defined(TENSOR_CHANNEL) && defined(TENSOR_WIDTH) && defined(TENSOR_HEIGHT) */
-
-    *offset_bottom = *offset_top + input->stride_y / sizeof(DATA_TYPE) - pad_horiz;
-
-    return;
-}
-
-#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
-
 /** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
  *
  * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32
  * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
  * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
  * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- * @note Tensor padding values must be passed at compile time using PAD_TENSOR_LEFT, PAD_TENSOR_RIGHT, PAD_TENSOR_TOP and PAD_TENSOR_BOTTOM
  *
- * @param[in]  input_ptr                             Pointer to the source tensor. Supported data types: F32
- * @param[in]  input_stride_x                        Stride of the source tensor in X dimension (in bytes)
- * @param[in]  input_step_x                          input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  input_stride_y                        Stride of the source tensor in Y dimension (in bytes)
- * @param[in]  input_step_y                          input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  input_stride_z                        Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  input_step_z                          input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  input_offset_first_element_in_bytes   The offset of the first element in the source tensor
- * @param[out] output_ptr                            Pointer to the destination tensor. Supported data types: same as @p input_ptr
- * @param[in]  output_stride_x                       Stride of the destination tensor in X dimension (in bytes)
- * @param[in]  output_step_x                         output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  output_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
- * @param[in]  output_step_y                         output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  output_stride_z                       Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  output_step_z                         output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  output_offset_first_element_in_bytes  The offset of the first element in the destination tensor
+ * @param[in]  src_ptr                               Pointer to the source tensor. Supported data types: F16/F32
+ * @param[in]  src_stride_x                          Stride of the source tensor in X dimension (in bytes)
+ * @param[in]  src_step_x                            src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  src_stride_y                          Stride of the source tensor in Y dimension (in bytes)
+ * @param[in]  src_step_y                            src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  src_stride_z                          Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]  src_step_z                            src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]  src_offset_first_element_in_bytes     The offset of the first element in the source tensor
+ * @param[out] dst_ptr                               Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in]  dst_stride_x                          Stride of the destination tensor in X dimension (in bytes)
+ * @param[in]  dst_step_x                            dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in]  dst_stride_y                          Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in]  dst_step_y                            dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in]  dst_stride_z                          Stride of the source tensor in Z dimension (in bytes)
+ * @param[in]  dst_step_z                            dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in]  dst_offset_first_element_in_bytes     The offset of the first element in the destination tensor
  * @param[in]  indices_ptr                           Pointer to the indices tensor. Supported data types: U32
  * @param[in]  indices_stride_x                      Stride of the indices tensor in X dimension (in bytes)
  * @param[in]  indices_step_x                        indices_stride_x * number of elements along X processed per workitem(in bytes)
@@ -223,109 +243,43 @@
  * @param[in]  indices_step_z                        indices_stride_z * number of elements along Z processed per workitem(in bytes)
  * @param[in]  indices_offset_first_element_in_bytes The offset of the first element in the indices tensor
  */
-__kernel void pooling_layer_2_nchw_indices_fp32(
-    TENSOR3D_DECLARATION(input),
-    TENSOR3D_DECLARATION(output),
+__kernel void pooling_layer_2_nchw_indices(
+    TENSOR3D_DECLARATION(src),
+    TENSOR3D_DECLARATION(dst),
     TENSOR3D_DECLARATION(indices))
 {
-    // Get pixels pointer
-    Tensor3D input   = CONVERT_TO_TENSOR3D_STRUCT(input);
-    Tensor3D output  = CONVERT_TO_TENSOR3D_STRUCT(output);
-    Tensor3D indices = CONVERT_TO_TENSOR3D_STRUCT(indices);
+    int id0 = get_global_id(0);
+    int id1 = get_global_id(1);
+    int id2 = get_global_id(2);
+
+    int2 x_coords = clamp((int2)((id0 * STRIDE_X) - PAD_X), (int2)0, (int2)(SRC_WIDTH - 1));
+    int2 y_coords = clamp((int2)((id1 * STRIDE_Y) - PAD_Y) + VEC_OFFS(int, 2), (int2)0, (int2)(SRC_HEIGHT - 1));
+
+    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + id2 * src_stride_z;
 
     // Load data
-    float2 data0 = VLOAD(2)(0, (__global float *)tensor3D_offset(&input, 0, 0, 0));
-    float2 data1 = VLOAD(2)(0, (__global float *)tensor3D_offset(&input, 0, 1, 0));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data0 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s0 * sizeof(DATA_TYPE) + y_coords.s0 * (int)src_stride_y));
+    VEC_DATA_TYPE(DATA_TYPE, 2)
+    data1 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s1 * sizeof(DATA_TYPE) + y_coords.s1 * (int)src_stride_y));
 
     // Perform calculations
-    float data0_max = POOL_OP(data0.s0, data0.s1);
-    float data1_max = POOL_OP(data1.s0, data1.s1);
-    float res       = POOL_OP(data0_max, data1_max);
+    DATA_TYPE data0_max = POOL_OP(data0.s0, data0.s1);
+    DATA_TYPE data1_max = POOL_OP(data1.s0, data1.s1);
+    DATA_TYPE res       = POOL_OP(data0_max, data1_max);
     // Store result
-    *(__global float *)output.ptr = res;
+    *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = res;
 
-#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
+#if defined(SRC_BATCH)
 
-    uint offset_top    = 0;
-    uint offset_bottom = 0;
-
-    offset_no_padding_nchw(&input, &offset_top, &offset_bottom);
+    uint offset_top    = (x_coords.s0 + y_coords.s0 * SRC_WIDTH + id2 * (SRC_WIDTH * SRC_HEIGHT)) % SRC_BATCH;
+    uint offset_bottom = offset_top + SRC_WIDTH;
 
     uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1));
     uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1));
     uint index  = select(index1, index0, isgreaterequal(data0_max, data1_max));
 
-    *(__global uint *)indices.ptr = index;
+    *(__global uint *)(indices_ptr + indices_offset_first_element_in_bytes + id0 * sizeof(uint) + id1 * indices_stride_y + id2 * indices_stride_z) = index;
 
-#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
-}
-
-/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
- *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F16
- * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
- * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
- * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- * @note Tensor padding values must be passed at compile time using PAD_TENSOR_LEFT, PAD_TENSOR_RIGHT, PAD_TENSOR_TOP and PAD_TENSOR_BOTTOM
- *
- * @param[in]  input_ptr                             Pointer to the source tensor. Supported data types: F16
- * @param[in]  input_stride_x                        Stride of the source tensor in X dimension (in bytes)
- * @param[in]  input_step_x                          input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  input_stride_y                        Stride of the source tensor in Y dimension (in bytes)
- * @param[in]  input_step_y                          input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  input_stride_z                        Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  input_step_z                          input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  input_offset_first_element_in_bytes   The offset of the first element in the source tensor
- * @param[out] output_ptr                            Pointer to the destination tensor. Supported data types: same as @p input_ptr
- * @param[in]  output_stride_x                       Stride of the destination tensor in X dimension (in bytes)
- * @param[in]  output_step_x                         output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  output_stride_y                       Stride of the destination tensor in Y dimension (in bytes)
- * @param[in]  output_step_y                         output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  output_stride_z                       Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  output_step_z                         output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  output_offset_first_element_in_bytes  The offset of the first element in the destination tensor
- * @param[in]  indices_ptr                           Pointer to the indices tensor. Supported data types: U32
- * @param[in]  indices_stride_x                      Stride of the indices tensor in X dimension (in bytes)
- * @param[in]  indices_step_x                        indices_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  indices_stride_y                      Stride of the indices tensor in Y dimension (in bytes)
- * @param[in]  indices_step_y                        indices_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  indices_stride_z                      Stride of the indices tensor in Z dimension (in bytes)
- * @param[in]  indices_step_z                        indices_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  indices_offset_first_element_in_bytes The offset of the first element in the indices tensor
- */
-__kernel void pooling_layer_2_nchw_indices_fp16(
-    TENSOR3D_DECLARATION(input),
-    TENSOR3D_DECLARATION(output),
-    TENSOR3D_DECLARATION(indices))
-{
-    // Get pixels pointer
-    Tensor3D input   = CONVERT_TO_TENSOR3D_STRUCT(input);
-    Tensor3D output  = CONVERT_TO_TENSOR3D_STRUCT(output);
-    Tensor3D indices = CONVERT_TO_TENSOR3D_STRUCT(indices);
-
-    // Load data
-    half2 data0 = VLOAD(2)(0, (__global half *)tensor3D_offset(&input, 0, 0, 0));
-    half2 data1 = VLOAD(2)(0, (__global half *)tensor3D_offset(&input, 0, 1, 0));
-
-    // Perform calculations
-    half data0_max = POOL_OP(data0.s0, data0.s1);
-    half data1_max = POOL_OP(data1.s0, data1.s1);
-    half res       = POOL_OP(data0_max, data1_max);
-    // Store result
-    *(__global half *)output.ptr = res;
-
-#if defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
-
-    uint offset_top    = 0;
-    uint offset_bottom = 0;
-
-    offset_no_padding_nchw(&input, &offset_top, &offset_bottom);
-
-    uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1));
-    uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1));
-    uint index  = select(index1, index0, isgreaterequal(data0_max, data1_max));
-
-    *(__global uint *)indices.ptr = index;
-
-#endif //defined(PAD_TENSOR_LEFT) && defined(PAD_TENSOR_RIGHT) && defined(PAD_TENSOR_TOP) && defined(PAD_TENSOR_BOTTOM)
+#endif // defined(SRC_BATCH)
 }
\ No newline at end of file
diff --git a/src/core/CL/cl_kernels/nchw/pooling_layer_quantized.cl b/src/core/CL/cl_kernels/nchw/pooling_layer_quantized.cl
deleted file mode 100644
index 1440ef3..0000000
--- a/src/core/CL/cl_kernels/nchw/pooling_layer_quantized.cl
+++ /dev/null
@@ -1,142 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "helpers.h"
-
-#if defined(DATA_TYPE) && defined(INITIAL_VALUE)
-#define VEC_TYPE(VEC_SIZE) VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
-
-#if defined(POOL_AVG)
-#define POOL_OP(x, y) ((x) + (y))
-#else /* defined(POOL_AVG) */
-#define POOL_OP(x, y) (max((x), (y)))
-#endif /* defined(POOL_AVG) */
-
-#define DIV_OP(x, y) (x * (1.f / y))
-
-#if defined(POOL_L2)
-#error "L2 pooling is not supported"
-#endif /* defined(POOL_L2) */
-
-int calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
-                        const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
-    int       start_x = get_global_id(0) * stride_x - pad_x;
-    int       start_y = get_global_id(1) * stride_y - pad_y;
-    const int end_x   = min(start_x + pool_size_x, upper_bound_w);
-    const int end_y   = min(start_y + pool_size_y, upper_bound_h);
-#if defined(EXCLUDE_PADDING)
-    start_x = max(0, start_x);
-    start_y = max(0, start_y);
-#endif /* defined(EXCLUDE_PADDING) */
-    return ((end_y - start_y) * (end_x - start_x));
-}
-
-/** Performs a pooling function of pool size equal to N (NCHW)
- *
- * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
- * @note In case of average pooling the following information must be passed at compile time:
- *       -DPOOL_AVG must be provided otherwise max pooling will be performed.
- *       -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
- *       -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- *       -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
- * @note Input data type must be passed at compile time using -DDAT_TYPE=type, e.g. -DDATA_TYPE=uchar
- * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
- *
- * @param[in]  input_ptr                            Pointer to the source image. Supported data types: QASYMM8/QASYMM8_SIGNED
- * @param[in]  input_stride_x                       Stride of the source image in X dimension (in bytes)
- * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  input_stride_y                       Stride of the source image in Y dimension (in bytes)
- * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source image
- * @param[out] output_ptr                           Pointer to the destination image. Supported data types: same as @p input_ptr
- * @param[in]  output_stride_x                      Stride of the destination image in X dimension (in bytes)
- * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in]  output_stride_y                      Stride of the destination image in Y dimension (in bytes)
- * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in]  output_stride_z                      Stride of the source tensor in Z dimension (in bytes)
- * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination image
- */
-__kernel void pooling_layer_MxN_quantized_nchw(
-    TENSOR3D_DECLARATION(input),
-    TENSOR3D_DECLARATION(output))
-{
-    // Get pixels pointer
-    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT(input);
-    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
-
-    int8 vdata = INITIAL_VALUE;
-    int  sdata = INITIAL_VALUE;
-
-    // Load data
-    for(int y = 0; y < POOL_SIZE_Y; y++)
-    {
-        int x = 0;
-        for(; x <= ((int)POOL_SIZE_X - 8); x += 8)
-        {
-            VEC_TYPE(8)
-            data       = vload8(0, (__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0));
-            int8 data0 = convert_int8(data);
-            vdata      = POOL_OP(vdata, data0);
-        }
-
-        // Leftover
-        for(; x < (int)POOL_SIZE_X; ++x)
-        {
-            DATA_TYPE data = *((__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0));
-            int data0      = convert_int(data);
-            sdata          = POOL_OP(sdata, data0);
-        }
-    }
-
-    // Reduce result
-    int4 reduce4 = POOL_OP(vdata.s0123, vdata.s4567);
-    int2 reduce2 = POOL_OP(reduce4.s01, reduce4.s23);
-    int  res     = POOL_OP(reduce2.s0, reduce2.s1);
-    res          = POOL_OP(res, sdata);
-
-#if defined(POOL_AVG)
-    res = round(DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y)));
-#endif /* defined(POOL_AVG) */
-
-    DATA_TYPE result_q8 = CONVERT(res, DATA_TYPE);
-
-#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
-
-    const float result_f32   = convert_float(result_q8);
-    const float input_offset = (float)OFFSET_IN1;
-    const float input_scale  = (float)SCALE_IN1;
-    const float scale_out    = (float)SCALE_OUT;
-    const float offset_out   = (float)OFFSET_OUT;
-    const float in_f32       = (result_f32 - input_offset) * input_scale;
-    const float out_f32      = in_f32 / scale_out + offset_out;
-    result_q8                = CONVERT_SAT(convert_int_rte(out_f32), DATA_TYPE);
-
-#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
-
-    *(__global DATA_TYPE *)output.ptr = result_q8;
-}
-#endif // defined(DATA_TYPE) && defined(INITIAL_VALUE)
\ No newline at end of file
diff --git a/src/gpu/cl/ClKernelLibrary.cpp b/src/gpu/cl/ClKernelLibrary.cpp
index 5cd969e..c05bb96 100644
--- a/src/gpu/cl/ClKernelLibrary.cpp
+++ b/src/gpu/cl/ClKernelLibrary.cpp
@@ -328,10 +328,6 @@
     { "pixelwise_mul_float", "common/pixelwise_mul_float.cl" },
     { "pixelwise_mul_int", "common/pixelwise_mul_int.cl" },
     { "pixelwise_mul_quantized", "common/pixelwise_mul_int.cl" },
-    { "pooling_layer_2", "common/pooling_layer.cl" },
-    { "pooling_layer_3", "common/pooling_layer.cl" },
-    { "pooling_layer_optimized_3", "common/pooling_layer.cl" },
-    { "pooling_layer_7", "common/pooling_layer.cl" },
     { "qlstm_layer_normalization", "common/qlstm_layer_normalization.cl" },
     { "quantization_layer", "common/quantization_layer.cl" },
     { "range", "common/range.cl" },
@@ -385,9 +381,7 @@
     { "normalize_planar_yuv_layer_nchw", "nchw/normalize_planar_yuv_layer.cl" },
     { "normalize_planar_yuv_layer_q8_nchw", "nchw/normalize_planar_yuv_layer_quantized.cl" },
     { "pooling_layer_MxN_nchw", "nchw/pooling_layer.cl" },
-    { "pooling_layer_2_nchw_indices_fp32", "nchw/pooling_layer.cl" },
-    { "pooling_layer_2_nchw_indices_fp16", "nchw/pooling_layer.cl" },
-    { "pooling_layer_MxN_quantized_nchw", "nchw/pooling_layer_quantized.cl" },
+    { "pooling_layer_2_nchw_indices", "nchw/pooling_layer.cl" },
     { "prior_box_layer_nchw", "nchw/prior_box_layer.cl" },
     { "remap_nearest_neighbour_nchw", "nchw/remap.cl" },
     { "remap_bilinear_nchw", "nchw/remap.cl" },
@@ -668,10 +662,6 @@
 #include "./cl_kernels/common/pixelwise_mul_int.clembed"
     },
     {
-        "common/pooling_layer.cl",
-#include "./cl_kernels/common/pooling_layer.clembed"
-    },
-    {
         "common/qlstm_layer_normalization.cl",
 #include "./cl_kernels/common/qlstm_layer_normalization.clembed"
     },
@@ -805,10 +795,6 @@
 #include "./cl_kernels/nchw/pooling_layer.clembed"
     },
     {
-        "nchw/pooling_layer_quantized.cl",
-#include "./cl_kernels/nchw/pooling_layer_quantized.clembed"
-    },
-    {
         "nchw/prior_box_layer.cl",
 #include "./cl_kernels/nchw/prior_box_layer.clembed"
     },
diff --git a/src/gpu/cl/kernels/ClPool2dKernel.cpp b/src/gpu/cl/kernels/ClPool2dKernel.cpp
index 04f2b14..5e53799 100644
--- a/src/gpu/cl/kernels/ClPool2dKernel.cpp
+++ b/src/gpu/cl/kernels/ClPool2dKernel.cpp
@@ -23,18 +23,13 @@
  */
 #include "src/gpu/cl/kernels/ClPool2dKernel.h"
 
-#include "arm_compute/core/CL/CLHelpers.h"
-#include "arm_compute/core/CL/CLKernelLibrary.h"
 #include "arm_compute/core/CL/ICLTensor.h"
 #include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/Validate.h"
 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
 #include "src/core/CL/CLValidate.h"
 #include "src/core/helpers/AutoConfiguration.h"
 #include "src/core/helpers/WindowHelpers.h"
 #include "support/Cast.h"
-#include "support/StringSupport.h"
 
 namespace arm_compute
 {
@@ -46,19 +41,6 @@
 
 namespace
 {
-// Internal window config info
-using ClPoolingConfig = std::pair<unsigned int, BorderSize>; //num_elems_processed_per_iteration, border_size
-
-void auto_init(const ITensorInfo *src, ITensorInfo *dst, ITensorInfo *indices, PoolingLayerInfo pool_info)
-{
-    TensorShape out_shape = compute_pool_shape(*src, pool_info);
-    auto_init_if_empty(*dst, src->clone()->set_tensor_shape(out_shape));
-    if(indices)
-    {
-        auto_init_if_empty(*indices, src->clone()->set_tensor_shape(out_shape).set_data_type(DataType::U32));
-    }
-}
-
 Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
@@ -104,102 +86,6 @@
 
     return Status{};
 }
-
-std::tuple<Status, Window, ClPoolingConfig> validate_and_configure_window(ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices = nullptr)
-{
-    ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
-
-    // Get data layout
-    const DataLayout data_layout = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
-    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
-    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
-
-    int                 pool_stride_x   = 0;
-    int                 pool_stride_y   = 0;
-    unsigned int        pooled_w        = 0;
-    unsigned int        pooled_h        = 0;
-    int                 pool_size_x     = pool_info.is_global_pooling ? src->dimension(idx_width) : pool_info.pool_size.width;
-    int                 pool_size_y     = pool_info.is_global_pooling ? src->dimension(idx_height) : pool_info.pool_size.height;
-    const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
-    std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
-    const int  pool_pad_right  = pad_stride_info.pad_right();
-    const int  pool_pad_top    = pad_stride_info.pad_top();
-    const int  pool_pad_left   = pad_stride_info.pad_left();
-    const int  pool_pad_bottom = pad_stride_info.pad_bottom();
-    BorderSize border_size     = BorderSize();
-
-    auto_init(src, dst, indices, pool_info);
-    pooled_w = dst->tensor_shape()[idx_width];
-    pooled_h = dst->tensor_shape()[idx_height];
-
-    const DataType data_type = src->data_type();
-
-    const int src_width  = src->dimension(idx_width);
-    const int src_height = src->dimension(idx_height);
-
-    unsigned int num_elems_processed_per_iteration = 0;
-    bool         window_changed                    = false;
-    Window       win{};
-    switch(data_layout)
-    {
-        case DataLayout::NCHW:
-        {
-            // Initialize border size
-            border_size = BorderSize(pool_pad_top, pool_pad_right, pool_pad_bottom, pool_pad_left);
-            // Change the number of elements processed per iteration
-            // for pooling 3x3 with stride less equal than 3
-            const bool can_optimize                         = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3) && !is_data_type_quantized(data_type);
-            num_elems_processed_per_iteration               = can_optimize ? 4 : 1;
-            const unsigned int num_elems_read_per_iteration = (num_elems_processed_per_iteration - 1) * pool_stride_x + pool_size_x;
-
-            // Number of iterations in X dimension
-            const int num_iterations_x = (pooled_w + num_elems_processed_per_iteration - 1) / num_elems_processed_per_iteration;
-
-            // Upper limit for the number of right/bottom border elements that are accessed
-            const int upper_bound_w = ((num_iterations_x - 1) * num_elems_processed_per_iteration * pool_stride_x - pool_pad_left + num_elems_read_per_iteration) - src_width;
-            const int upper_bound_h = ((pooled_h - 1) * pool_stride_y - pool_pad_top + pool_size_y) - src_height;
-
-            border_size.right  = std::max(upper_bound_w, pool_pad_right);
-            border_size.bottom = std::max(upper_bound_h, pool_pad_bottom);
-
-            win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration));
-
-            AccessWindowRectangle src_access(src, -pool_pad_left, -pool_pad_top, num_elems_read_per_iteration, pool_size_y,
-                                             pool_stride_x, pool_stride_y);
-            AccessWindowHorizontal dst_access(dst, 0, num_elems_processed_per_iteration);
-
-            // Update indices window
-            if(indices)
-            {
-                AccessWindowHorizontal indices_access(indices, 0, num_elems_processed_per_iteration);
-                window_changed = update_window_and_padding(win, src_access, dst_access, indices_access);
-                indices_access.set_valid_region(win, ValidRegion(Coordinates(), indices->tensor_shape()));
-            }
-            else
-            {
-                window_changed = update_window_and_padding(win, src_access, dst_access);
-            }
-
-            dst_access.set_valid_region(win, ValidRegion(Coordinates(), dst->tensor_shape()));
-            break;
-        }
-        case DataLayout::NHWC:
-        {
-            const size_t vec_size = dst->data_type() == DataType::F32 ? 2 : 4;
-
-            // Initialize border size
-            border_size                       = BorderSize();
-            num_elems_processed_per_iteration = adjust_vec_size(vec_size, dst->dimension(0));
-            win                               = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration));
-            break;
-        }
-        default:
-            ARM_COMPUTE_ERROR("Not implemented");
-    }
-
-    Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
-    return std::make_tuple(err, win, ClPoolingConfig(num_elems_processed_per_iteration, border_size));
-}
 } // namespace
 
 ClPool2dKernel::ClPool2dKernel()
@@ -207,20 +93,27 @@
     _type = CLKernelType::POOL;
 }
 
-BorderSize ClPool2dKernel::border_size() const
-{
-    return _border_size;
-}
-
 void ClPool2dKernel::configure(const ClCompileContext &compile_context, ITensorInfo *src, ITensorInfo *dst, const PoolingLayerInfo &pool_info, ITensorInfo *indices)
 {
     ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info, indices));
 
     auto padding_info = get_padding_info({ src, dst, indices });
 
+    // Auto init if empty
+    TensorShape out_shape = compute_pool_shape(*src, pool_info);
+    auto_init_if_empty(*dst, src->clone()->set_tensor_shape(out_shape));
+    if(indices)
+    {
+        auto_init_if_empty(*indices, src->clone()->set_tensor_shape(out_shape).set_data_type(DataType::U32));
+    }
+
     // Set instance variables
-    _pool_info                          = pool_info;
-    _data_layout                        = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
+    _pool_info                         = pool_info;
+    _data_layout                       = pool_info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : pool_info.data_layout;
+    _num_elems_processed_per_iteration = (_data_layout == DataLayout::NCHW) ? 1 : ((dst->data_type() == DataType::F32) ? 2 : 4);
+    _num_elems_processed_per_iteration = adjust_vec_size(_num_elems_processed_per_iteration, dst->dimension(0));
+
     int                 pool_stride_x   = 0;
     int                 pool_stride_y   = 0;
     const PoolingType   pool_type       = pool_info.pool_type;
@@ -233,53 +126,13 @@
     const PadStrideInfo pad_stride_info = pool_info.pad_stride_info;
     const bool          exclude_padding = pool_info.exclude_padding;
     std::tie(pool_stride_x, pool_stride_y) = pad_stride_info.stride();
-    const int pool_pad_top  = pad_stride_info.pad_top();
-    const int pool_pad_left = pad_stride_info.pad_left();
+    const int      pool_pad_top  = pad_stride_info.pad_top();
+    const int      pool_pad_left = pad_stride_info.pad_left();
+    const DataType data_type     = src->data_type();
 
     // Set build options
     CLBuildOptions build_opts;
-    const DataType data_type = src->data_type();
-
-    // Configure kernel window
-    auto win_config = validate_and_configure_window(src, dst, pool_info, indices);
-
-    ARM_COMPUTE_ERROR_THROW_ON(std::get<0>(win_config));
-    ICLKernel::configure_internal(std::get<1>(win_config));
-
-    ClPoolingConfig pooling_config     = std::get<2>(win_config);
-    _num_elems_processed_per_iteration = pooling_config.first;
-    _border_size                       = pooling_config.second;
-
     build_opts.add_option("-DVEC_SIZE=" + support::cpp11::to_string(_num_elems_processed_per_iteration));
-
-    // Tensor paddings are used to calculate the indicies for MAX pooling
-    if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
-    {
-        build_opts.add_option("-DPAD_TENSOR_LEFT=" + support::cpp11::to_string(src->padding().left));
-        build_opts.add_option("-DPAD_TENSOR_RIGHT=" + support::cpp11::to_string(src->padding().right));
-        build_opts.add_option("-DPAD_TENSOR_TOP=" + support::cpp11::to_string(src->padding().top));
-        build_opts.add_option("-DPAD_TENSOR_BOTTOM=" + support::cpp11::to_string(src->padding().bottom));
-        build_opts.add_option("-DTENSOR_CHANNEL=" + support::cpp11::to_string(src->dimension(idx_channel)));
-        build_opts.add_option("-DTENSOR_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width)));
-        build_opts.add_option("-DTENSOR_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height)));
-    }
-
-    if(is_data_type_quantized_asymmetric(data_type) && src->quantization_info() != dst->quantization_info())
-    {
-        const UniformQuantizationInfo iq_info = src->quantization_info().uniform();
-        const UniformQuantizationInfo oq_info = dst->quantization_info().uniform();
-
-        build_opts.add_option("-DOFFSET_IN1=" + float_to_string_with_full_precision(iq_info.offset));
-        build_opts.add_option("-DOFFSET_OUT=" + float_to_string_with_full_precision(oq_info.offset));
-        build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq_info.scale));
-        build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale));
-    }
-
-    // Check dst dimensions
-    auto_init(src, dst, indices, pool_info);
-
-    ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst, pool_info, indices));
-
     build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
     build_opts.add_option("-DPOOL_" + string_from_pooling_type(pool_type));
     build_opts.add_option("-DSTRIDE_X=" + support::cpp11::to_string(pool_stride_x));
@@ -288,6 +141,32 @@
     build_opts.add_option("-DPAD_Y=" + support::cpp11::to_string(pool_pad_top));
     build_opts.add_option("-DPOOL_SIZE_X=" + support::cpp11::to_string(pool_size_x));
     build_opts.add_option("-DPOOL_SIZE_Y=" + support::cpp11::to_string(pool_size_y));
+    build_opts.add_option("-DSRC_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width)));
+    build_opts.add_option("-DSRC_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height)));
+    build_opts.add_option("-DMAX_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width) + (exclude_padding ? 0 : pool_pad_left)));
+    build_opts.add_option("-DMAX_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height) + (exclude_padding ? 0 : pool_pad_top)));
+
+    // Tensor paddings are used to calculate the indicies for MAX pooling
+    if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
+    {
+        build_opts.add_option("-DSRC_BATCH=" + support::cpp11::to_string(src->tensor_shape().total_size_lower(3)));
+    }
+
+    if(is_data_type_quantized_asymmetric(data_type))
+    {
+        build_opts.add_option("-DQUANTIZED");
+
+        if(src->quantization_info() != dst->quantization_info())
+        {
+            const UniformQuantizationInfo iq_info = src->quantization_info().uniform();
+            const UniformQuantizationInfo oq_info = dst->quantization_info().uniform();
+
+            build_opts.add_option("-DOFFSET_IN1=" + float_to_string_with_full_precision(iq_info.offset));
+            build_opts.add_option("-DOFFSET_OUT=" + float_to_string_with_full_precision(oq_info.offset));
+            build_opts.add_option("-DSCALE_IN1=" + float_to_string_with_full_precision(iq_info.scale));
+            build_opts.add_option("-DSCALE_OUT=" + float_to_string_with_full_precision(oq_info.scale));
+        }
+    }
 
     // Set the initial value for the pooling operation accordingly with the data type
     if(pool_type == PoolingType::MAX)
@@ -309,9 +188,6 @@
         build_opts.add_option("-DINITIAL_VALUE=0");
     }
 
-    build_opts.add_option("-DMAX_WIDTH=" + support::cpp11::to_string(src->dimension(idx_width) + (exclude_padding ? 0 : pool_pad_left)));
-    build_opts.add_option("-DMAX_HEIGHT=" + support::cpp11::to_string(src->dimension(idx_height) + (exclude_padding ? 0 : pool_pad_top)));
-
     // Create kernel
     switch(_data_layout)
     {
@@ -319,7 +195,7 @@
         {
             const auto use_fp_mixed_precision = (data_type == DataType::F16) && pool_info.fp_mixed_precision;
             const auto use_wider_accumulator  = use_fp_mixed_precision && (pool_type != PoolingType::MAX);
-            const auto acc_data_type          = get_cl_type_from_data_type(use_wider_accumulator ? DataType::F32 : data_type);
+            const auto acc_data_type          = get_cl_type_from_data_type(use_wider_accumulator ? DataType::F32 : (is_data_type_quantized(data_type) ? DataType::S32 : data_type));
             build_opts.add_option("-DACC_DATA_TYPE=" + acc_data_type);
             build_opts.add_option_if(use_wider_accumulator, "-DFP_MIXED_PRECISION");
 
@@ -328,33 +204,15 @@
                 build_opts.add_option_if(exclude_padding, "-DEXCLUDE_PADDING");
             }
 
-            if((pool_size_x == 3) && (pool_size_y == 3) && !is_data_type_quantized_asymmetric(data_type))
-            {
-                // Check if we have pool3x3 with stride_x less equal than 3. In these cases, run an optimized OpenCL kernel where
-                // each thread computes 4 dst elements
-                const bool is_pool3x3_stride_le3 = (pool_size_x == 3) && (pool_size_y == 3) && (pool_stride_x <= 3);
-
-                std::string kernel_name = ((is_pool3x3_stride_le3) ? "pooling_layer_optimized_" : "pooling_layer_")
-                                          + support::cpp11::to_string(pool_size_x);
-                _kernel = create_kernel(compile_context, kernel_name, build_opts.options());
-            }
-            else if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
+            if(pool_info.pool_size == Size2D(2, 2) && pool_type == PoolingType::MAX && indices && is_data_type_float(data_type))
             {
                 // For max pooling with pool2x2, store indicies which will be used in max unpooling
-                if(data_type == DataType::F32)
-                {
-                    std::string kernel_name = "pooling_layer_2_nchw_indices_fp32";
-                    _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
-                }
-                else if(data_type == DataType::F16)
-                {
-                    std::string kernel_name = "pooling_layer_2_nchw_indices_fp16";
-                    _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
-                }
+                std::string kernel_name = "pooling_layer_2_nchw_indices";
+                _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
             }
             else // Run general case
             {
-                std::string kernel_name = is_data_type_quantized_asymmetric(data_type) ? "pooling_layer_MxN_quantized_nchw" : "pooling_layer_MxN_nchw";
+                std::string kernel_name = "pooling_layer_MxN_nchw";
                 _kernel                 = create_kernel(compile_context, kernel_name, build_opts.options());
             }
             break;
@@ -405,6 +263,10 @@
             ARM_COMPUTE_ERROR("Not implemented");
     }
 
+    // Configure kernel window
+    Window win = calculate_max_window(*dst, Steps(_num_elems_processed_per_iteration));
+    ICLKernel::configure_internal(win);
+
     // Set config_id for enabling LWS tuning
     _config_id = "pooling_layer_";
     _config_id += lower_string(string_from_data_type(data_type));
@@ -419,14 +281,12 @@
     _config_id += "_";
     _config_id += lower_string(string_from_data_layout(src->data_layout()));
 
-    ARM_COMPUTE_ERROR_ON(src->data_layout() == DataLayout::NHWC && has_padding_changed(padding_info));
+    ARM_COMPUTE_ERROR_ON(has_padding_changed(padding_info));
 }
 
 Status ClPool2dKernel::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &pool_info, const ITensorInfo *indices)
 {
     ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst, pool_info, indices));
-    ARM_COMPUTE_RETURN_ON_ERROR(std::get<0>(validate_and_configure_window(src->clone().get(), dst->clone().get(), pool_info)));
-
     return Status{};
 }
 
@@ -453,18 +313,9 @@
             Window slice = window_collapsed.first_slice_window_3D();
             do
             {
-                // Upsample src by pool size
-                Window in_slice(slice);
-                in_slice.set(Window::DimX, Window::Dimension(in_slice.x().start() - _pool_info.pad_stride_info.pad_left(),
-                                                             (in_slice.x().end() - _pool_info.pad_stride_info.pad_left()) * pool_stride_x,
-                                                             pool_stride_x * _num_elems_processed_per_iteration));
-                in_slice.set(Window::DimY, Window::Dimension(in_slice.y().start() - _pool_info.pad_stride_info.pad_top(),
-                                                             (in_slice.y().end() - _pool_info.pad_stride_info.pad_top()) * pool_stride_y,
-                                                             pool_stride_y));
-
                 // Set srcs
                 unsigned int idx = 0;
-                add_3D_tensor_argument(idx, src, in_slice);
+                add_3D_tensor_argument(idx, src, slice);
                 add_3D_tensor_argument(idx, dst, slice);
                 if(indices && is_data_type_float(src->info()->data_type()) && (_pool_info.pool_size == Size2D(2, 2)))
                 {
diff --git a/src/gpu/cl/kernels/ClPool2dKernel.h b/src/gpu/cl/kernels/ClPool2dKernel.h
index 61d204d..f5bb068 100644
--- a/src/gpu/cl/kernels/ClPool2dKernel.h
+++ b/src/gpu/cl/kernels/ClPool2dKernel.h
@@ -61,12 +61,10 @@
 
     // Inherited methods overridden:
     void run_op(ITensorPack &tensors, const Window &window, cl::CommandQueue &queue) override;
-    BorderSize border_size() const override;
 
 public:
     PoolingLayerInfo _pool_info{};
     DataLayout       _data_layout{ DataLayout::UNKNOWN };
-    BorderSize       _border_size{ 0 };
     unsigned int     _num_elems_processed_per_iteration{ 1 };
 };
 } // namespace kernels
diff --git a/src/gpu/cl/operators/ClPool2d.cpp b/src/gpu/cl/operators/ClPool2d.cpp
index fdadd19..a5b18a2 100644
--- a/src/gpu/cl/operators/ClPool2d.cpp
+++ b/src/gpu/cl/operators/ClPool2d.cpp
@@ -25,7 +25,6 @@
 
 #include "arm_compute/runtime/CL/CLScheduler.h"
 
-#include "src/core/CL/kernels/CLFillBorderKernel.h"
 #include "src/gpu/cl/ClCompileContext.h"
 #include "src/gpu/cl/kernels/ClPool2dKernel.h"
 
@@ -40,62 +39,15 @@
     auto k = std::make_unique<kernels::ClPool2dKernel>();
     k->set_target(CLScheduler::get().target());
     k->configure(compile_context, src, dst, info, indices);
-    _pooling = std::move(k);
-
-    const DataType data_type = src->data_type();
-
-    // Configure border depending on operation required (quantize border in case of asymmetric data_type)
-    BorderMode border_mode{};
-    PixelValue pixel_value(0.f);
-    if(is_data_type_quantized_asymmetric(data_type) && !info.exclude_padding)
-    {
-        pixel_value = PixelValue(0, data_type, src->quantization_info());
-    }
-
-    // Data layout
-    const auto data_layout = info.data_layout == DataLayout::UNKNOWN ? src->data_layout() : info.data_layout;
-
-    switch(data_layout)
-    {
-        case DataLayout::NCHW:
-            border_mode = (PoolingType::MAX == info.pool_type) ? BorderMode::REPLICATE : BorderMode::CONSTANT;
-            break;
-        case DataLayout::NHWC:
-            border_mode = BorderMode::CONSTANT;
-            if(PoolingType::MAX == info.pool_type)
-            {
-                if(is_data_type_quantized(data_type))
-                {
-                    std::tie(pixel_value, std::ignore) = get_min_max(data_type);
-                }
-                else
-                {
-                    pixel_value = PixelValue(std::numeric_limits<float>::lowest());
-                }
-            }
-            break;
-        default:
-            ARM_COMPUTE_ERROR("Data layout not supported");
-    }
-    auto b = std::make_unique<CLFillBorderKernel>();
-    b->configure(compile_context, src, _pooling->border_size(), border_mode, pixel_value);
-    _border_handler = std::move(b);
+    _kernel = std::move(k);
 
     // Tune kernels
-    CLScheduler::get().tune_kernel_static(*_pooling);
+    CLScheduler::get().tune_kernel_static(*_kernel);
 }
 
 Status ClPool2d::validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &info, const ITensorInfo *indices)
 {
     return kernels::ClPool2dKernel::validate(src, dst, info, indices);
 }
-
-void ClPool2d::run(ITensorPack &tensors)
-{
-    ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
-
-    CLScheduler::get().enqueue_op(*_border_handler.get(), tensors, false);
-    CLScheduler::get().enqueue_op(*_pooling.get(), tensors, false);
-}
 } // namespace opencl
 } // namespace arm_compute
diff --git a/src/gpu/cl/operators/ClPool2d.h b/src/gpu/cl/operators/ClPool2d.h
index a041053..f353ba2 100644
--- a/src/gpu/cl/operators/ClPool2d.h
+++ b/src/gpu/cl/operators/ClPool2d.h
@@ -35,7 +35,6 @@
 {
 /** Basic function to simulate a pooling layer with the specified pooling operation. This function calls the following OpenCL kernels:
  *
- * -# @ref CLFillBorderKernel (executed if padding size is different from zero)
  * -# @ref opencl::ClPool2d
  */
 class ClPool2d : public IClOperator
@@ -59,13 +58,6 @@
      * @return a status
      */
     static Status validate(const ITensorInfo *src, const ITensorInfo *dst, const PoolingLayerInfo &info, const ITensorInfo *indices = nullptr);
-
-    // Inherited method overridden
-    void run(ITensorPack &tensors) override;
-
-private:
-    std::unique_ptr<ICLKernel> _pooling{ nullptr };
-    std::unique_ptr<ICLKernel> _border_handler{ nullptr };
 };
 } // namespace opencl
 } // namespace arm_compute