blob: 0be9d8f92bdd1cc96077e4a2cb53c768360ead0f [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEDepthwiseConvolutionLayer3x3Kernel.h"
#include "arm_compute/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/INEKernel.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
namespace arm_compute
{
namespace
{
template <typename T1, typename T2, unsigned int stridex>
class convolver_3x3
{
public:
static void convolve(const Window &window, unsigned int num_elems_written_per_iteration,
const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation)
{
const int input_offset = -input->info()->quantization_info().uniform().offset;
const int weights_offset = -weights->info()->quantization_info().uniform().offset;
const int input_stride_x = input->info()->strides_in_bytes().x();
const int input_stride_y = input->info()->strides_in_bytes().y();
const int input_stride_z = input->info()->strides_in_bytes().z();
const int input_stride_w = input->info()->strides_in_bytes()[3];
const int output_stride_y = output->info()->strides_in_bytes().y();
const int kernel_stride_y = weights->info()->strides_in_bytes().y();
const int kernel_stride_z = weights->info()->strides_in_bytes().z();
const int output_w = output->info()->dimension(0);
const int output_h = output->info()->dimension(1);
const int delta_input = detail::get_input_num_elems_processed(num_elems_written_per_iteration, stridex);
const unsigned int conv_stride_y = std::get<1>(conv_info.stride());
const unsigned int conv_pad_x = conv_info.pad_left();
const unsigned int conv_pad_y = conv_info.pad_top();
// setup output window for the iterator
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, output->info()->dimension(Window::DimX), output->info()->dimension(Window::DimX)));
window_out.set(Window::DimY, Window::Dimension(0, output->info()->dimension(Window::DimY), output->info()->dimension(Window::DimY)));
// setup input window for the iterator
Window window_in = window;
// Iteration of input is taken care of in execute_window_loop
window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
window_in.set(Window::DimY, Window::Dimension(0, 0, 0));
window_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
Window window_k = calculate_max_window(*weights->info(), Steps(1u));
Iterator in(input, window_in);
Iterator out(output, window_out);
Iterator w(weights, window_k);
const uint8_t *weights_ptr = w.ptr();
execute_window_loop(window_out, [&](const Coordinates & id)
{
int ih = 0;
int oh = 0;
const uint8_t *input_ptr = in.ptr() - conv_pad_x * input_stride_x - conv_pad_y * input_stride_y + (id.z() / depth_multiplier) * input_stride_z + input_stride_w * id[3];
const uint8_t *ptr_weights_base = weights_ptr + id.z() * kernel_stride_z;
const auto ptr_weights_r0 = reinterpret_cast<const T1 *>(ptr_weights_base);
const auto ptr_weights_r1 = reinterpret_cast<const T1 *>(ptr_weights_base + kernel_stride_y);
const auto ptr_weights_r2 = reinterpret_cast<const T1 *>(ptr_weights_base + kernel_stride_y * 2);
const auto vw_r0 = detail::load_matrix_row(ptr_weights_r0, weights_offset);
const auto vw_r1 = detail::load_matrix_row(ptr_weights_r1, weights_offset);
const auto vw_r2 = detail::load_matrix_row(ptr_weights_r2, weights_offset);
for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
{
auto in_top = reinterpret_cast<const T1 *>(input_ptr + (ih + 0) * input_stride_y);
auto in_mid = reinterpret_cast<const T1 *>(input_ptr + (ih + dilation.y()) * input_stride_y);
auto in_low = reinterpret_cast<const T1 *>(input_ptr + (ih + 2 * dilation.y()) * input_stride_y); // uint8/int8
auto p_out = reinterpret_cast<T2 *>(out.ptr() + oh * output_stride_y); // int32
for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
in_top += delta_input, in_mid += delta_input, in_low += delta_input,
p_out += num_elems_written_per_iteration)
{
if(dilation == Size2D(1U, 1U))
{
detail::convolve_3x3<false>(in_top, in_mid, in_low, p_out, vw_r0, vw_r1, vw_r2, stridex, input_offset);
}
else
{
auto vres = detail::convolve_3x3_dilation(in_top, in_mid, in_low, vw_r0, vw_r1, vw_r2, dilation.x(), stridex, input_offset);
detail::store_results<stridex>(p_out, vres);
}
}
}
},
out);
}
};
template <typename T1, typename T2>
inline void convolve_3x3(const Window &window, unsigned int num_elems_written_per_iteration,
const ITensor *input, const ITensor *weights, ITensor *output,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation)
{
const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
switch(conv_stride_x)
{
case 1:
convolver_3x3<T1, T2, 1>::convolve(window, num_elems_written_per_iteration, input, weights, output, conv_info, depth_multiplier, dilation);
break;
case 2:
convolver_3x3<T1, T2, 2>::convolve(window, num_elems_written_per_iteration, input, weights, output, conv_info, depth_multiplier, dilation);
break;
case 3:
convolver_3x3<T1, T2, 3>::convolve(window, num_elems_written_per_iteration, input, weights, output, conv_info, depth_multiplier, dilation);
break;
default:
ARM_COMPUTE_ERROR("Not implemented");
}
}
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
const DataLayout data_layout = input->data_layout();
const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != 3 || weights->dimension(height_idx) != 3);
ARM_COMPUTE_RETURN_ERROR_ON(conv_info.stride().first < 1 || conv_info.stride().first > 3);
if(output->total_size() != 0)
{
const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
if(is_data_type_quantized_asymmetric(input->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON(output->data_type() != DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
}
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *weights, ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
const Size2D &dilation)
{
Window win;
bool window_changed = false;
// Get convolved dimensions
const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
const DataType output_dt = is_data_type_quantized_asymmetric(input->data_type()) ? DataType::S32 : input->data_type();
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output, input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_data_type(output_dt).set_quantization_info(output->quantization_info()));
// Configure kernel window (generic)
const unsigned int conv_stride_x = conv_info.stride().first;
const unsigned int conv_stride_y = conv_info.stride().second;
const unsigned int conv_pad_top = conv_info.pad_top();
const unsigned int conv_pad_left = conv_info.pad_left();
unsigned int num_elems_written_per_iteration = 16 >> conv_stride_x;
unsigned int num_elems_read_per_iteration = 0;
switch(input->data_type())
{
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
num_elems_read_per_iteration = 16 + 15 * (dilation.x() - 1);
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
num_elems_written_per_iteration = 32 >> conv_stride_x;
num_elems_read_per_iteration = 24 + 23 * (dilation.x() - 1);
break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F32:
num_elems_read_per_iteration = 12 + 11 * (dilation.x() - 1);
break;
default:
ARM_COMPUTE_ERROR("Data type not supported.");
}
// Configure kernel window
win = calculate_max_window(*output, Steps(num_elems_written_per_iteration));
AccessWindowRectangle input_access(input, -conv_pad_left, -conv_pad_top, num_elems_read_per_iteration, 3 + 2 * (dilation.y() - 1), conv_stride_x, conv_stride_y);
AccessWindowStatic weights_access(weights, 0, 0, 3, 3);
AccessWindowHorizontal output_access(output, 0, num_elems_written_per_iteration);
window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
NEDepthwiseConvolutionLayer3x3Kernel::NEDepthwiseConvolutionLayer3x3Kernel()
: _border_size(0), _input(), _output(), _weights(), _conv_info(), _num_elems_written_per_iteration(0), _depth_multiplier(1), _dilation()
{
}
BorderSize NEDepthwiseConvolutionLayer3x3Kernel::border_size() const
{
return _border_size;
}
void NEDepthwiseConvolutionLayer3x3Kernel::configure(const ITensor *input, const ITensor *weights, ITensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), weights->info(), output->info(), conv_info, depth_multiplier, dilation));
_input = input;
_output = output;
_weights = weights;
_conv_info = conv_info;
_depth_multiplier = depth_multiplier;
switch(input->info()->data_type())
{
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
case DataType::F32:
_num_elems_written_per_iteration = 16 >> _conv_info.stride().first;
break;
case DataType::F16:
_num_elems_written_per_iteration = 32 >> _conv_info.stride().first;
break;
default:
ARM_COMPUTE_ERROR("Data type not supported.");
}
_border_size = BorderSize(_conv_info.pad_top(), _conv_info.pad_right(), _conv_info.pad_bottom(), _conv_info.pad_left());
_dilation = dilation;
auto win_config = validate_and_configure_window(_input->info(), _weights->info(), _output->info(), _conv_info, _depth_multiplier, dilation);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
Status NEDepthwiseConvolutionLayer3x3Kernel::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, weights, output, conv_info, depth_multiplier, dilation));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), weights->clone().get(), output->clone().get(), conv_info, depth_multiplier, dilation).first);
return Status{};
}
void NEDepthwiseConvolutionLayer3x3Kernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_UNUSED(info);
switch(_input->info()->data_type())
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
convolve_3x3<float16_t, float16_t>(window, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info, _depth_multiplier, _dilation);
break;
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F32:
convolve_3x3<float, float>(window, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info, _depth_multiplier, _dilation);
break;
case DataType::QASYMM8:
convolve_3x3<uint8_t, int32_t>(window, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info, _depth_multiplier, _dilation);
break;
case DataType::QASYMM8_SIGNED:
convolve_3x3<int8_t, int32_t>(window, _num_elems_written_per_iteration, _input, _weights, _output, _conv_info, _depth_multiplier, _dilation);
break;
default:
ARM_COMPUTE_ERROR("Not implemented");
}
}
} // namespace arm_compute