blob: 00f6f6977137678adb7b704d23a5389bf2231e75 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "support/MemorySupport.h"
namespace arm_compute
{
using namespace arm_compute::misc;
using namespace arm_compute::misc::shape_calculator;
namespace
{
Status validate_arguments_3x3(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation)
{
// This function should be removed and incorporated inside CLDepthwiseConvolutionLayerInternal3x3 once CLDepthwiseConvolutionLayer3x3 is properly removed
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
const bool is_nhwc = input->data_layout() == DataLayout::NHWC;
const bool needs_permute = is_nhwc && (depth_multiplier > 1);
const bool needs_weights_reshape = is_nhwc && (depth_multiplier == 1) && is_quantized;
const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);
const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
DepthwiseConvolutionReshapeInfo info;
info.c0 = 4;
info.transpose = is_stride_1_dilation_1 && is_dot8_supported;
TensorInfo output_multipliers_shifts_info(TensorInfo(TensorShape(1U), 1, DataType::S32));
if(is_quantized)
{
if(is_data_type_quantized_per_channel(weights->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL);
const size_t idx_c = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::CHANNEL);
output_multipliers_shifts_info.set_tensor_shape(TensorShape(weights->dimension(idx_c)));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
}
}
if(needs_permute)
{
TensorShape permuted_input_shape = input->tensor_shape();
TensorShape permuted_weights_shape = weights->tensor_shape();
TensorShape permuted_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
permute(permuted_input_shape, PermutationVector(1U, 2U, 0U));
permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U));
permute(permuted_output_shape, PermutationVector(1U, 2U, 0U));
const TensorInfo permuted_input = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW);
const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW);
const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW);
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output,
conv_info, depth_multiplier, act_info, gpu_target,
dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info));
}
else if(is_nhwc)
{
if(needs_weights_reshape)
{
auto reshaped_weights_shape = arm_compute::misc::shape_calculator::compute_reshaped_depthwise_weights_shape(*weights, info);
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, &weights->clone()->set_tensor_shape(reshaped_weights_shape), biases,
output, conv_info, depth_multiplier, act_info,
dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info,
dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info));
}
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target,
dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info));
}
return Status{};
}
} // namespace
CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager)
: _func(std::move(memory_manager))
{
}
void CLDepthwiseConvolutionLayer3x3::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
ActivationLayerInfo act_info, const Size2D &dilation)
{
_func.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
Status CLDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation)
{
return validate_arguments_3x3(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation);
}
void CLDepthwiseConvolutionLayer3x3::run()
{
_func.run();
}
void CLDepthwiseConvolutionLayer3x3::prepare()
{
_func.prepare();
}
CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::CLDepthwiseConvolutionLayerGeneric(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)),
_dwc_native_kernel(),
_permute_input_to_nhwc(),
_permute_weights_to_nhwc(),
_permute_output_to_nchw(),
_permuted_input(),
_permuted_weights(),
_permuted_output(),
_output_multipliers(),
_output_shifts(),
_original_weights(),
_input(),
_output(),
_needs_permute(false),
_is_prepared(false),
_is_quantized(false)
{
}
void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(CLDepthwiseConvolutionLayer::validate(input->info(),
weights->info(),
biases != nullptr ? biases->info() : nullptr,
output->info(),
conv_info,
depth_multiplier,
act_info,
dilation));
_is_quantized = is_data_type_quantized(input->info()->data_type());
_is_prepared = false;
_original_weights = weights;
_input = input;
_output = output;
_needs_permute = input->info()->data_layout() == DataLayout::NCHW;
ICLTensor *input_to_use = input;
const ICLTensor *weights_to_use = weights;
ICLTensor *output_to_use = output;
if(_needs_permute)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NCHW -> NHWC
_permute_input_to_nhwc.configure(input, &_permuted_input, PermutationVector(2U, 0U, 1U));
_permuted_input.info()->set_data_layout(DataLayout::NHWC);
// Configure the function to transform the weights tensor from IHW -> HWI
_permute_weights_to_nhwc.configure(weights, &_permuted_weights, PermutationVector(2U, 0U, 1U));
_permuted_weights.info()->set_data_layout(DataLayout::NHWC);
// Set output quantization info before dwc kernel configure
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
input_to_use = &_permuted_input;
weights_to_use = &_permuted_weights;
output_to_use = &_permuted_output;
}
CLTensor *output_multipliers_to_use = nullptr;
CLTensor *output_shifts_to_use = nullptr;
if(_is_quantized)
{
const size_t idx_c = get_data_layout_dimension_index(weights->info()->data_layout(), DataLayoutDimension::CHANNEL);
const size_t num_filters = (is_data_type_quantized_per_channel(weights->info()->data_type())) ? weights->info()->dimension(idx_c) : 1;
_output_multipliers.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32));
_output_shifts.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32));
output_multipliers_to_use = &_output_multipliers;
output_shifts_to_use = &_output_shifts;
}
DWCWeightsKernelInfo dwc_weights_info;
dwc_weights_info.n0 = (depth_multiplier == 1) ? 8 : 1;
DWCKernelInfo dwc_info;
dwc_info.activation_info = act_info;
_dwc_native_kernel.configure(input_to_use, weights_to_use, biases, output_to_use,
dwc_weights_info, dwc_info, conv_info, depth_multiplier, dilation,
output_multipliers_to_use, output_shifts_to_use);
if(_needs_permute)
{
_permuted_input.allocator()->allocate();
// Configure the function to transform the convoluted output to NCHW format
_permuted_output.info()->set_data_layout(DataLayout::NCHW);
_permute_output_to_nchw.configure(&_permuted_output, output, PermutationVector(1U, 2U, 0U));
_permuted_output.allocator()->allocate();
}
if(_is_quantized)
{
_output_multipliers.allocator()->allocate();
_output_shifts.allocator()->allocate();
}
}
Status CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());
DWCWeightsKernelInfo dwc_weights_info;
dwc_weights_info.n0 = (depth_multiplier == 1) ? 8 : 1;
DWCKernelInfo dwc_info;
dwc_info.activation_info = act_info;
const bool needs_permute = input->data_layout() == DataLayout::NCHW;
const bool is_quantized = is_data_type_quantized(input->data_type());
TensorInfo output_multipliers_shifts_info(TensorInfo(TensorShape(1U), 1, DataType::S32));
if(is_quantized)
{
if(is_data_type_quantized_per_channel(weights->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL);
const size_t idx_c = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::CHANNEL);
output_multipliers_shifts_info.set_tensor_shape(TensorShape(weights->dimension(idx_c)));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
}
}
if(needs_permute)
{
TensorShape permuted_input_shape = input->tensor_shape();
TensorShape permuted_weights_shape = weights->tensor_shape();
TensorShape permuted_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
permute(permuted_input_shape, PermutationVector(2U, 0U, 1U));
permute(permuted_weights_shape, PermutationVector(2U, 0U, 1U));
permute(permuted_output_shape, PermutationVector(2U, 0U, 1U));
const TensorInfo permuted_input = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NHWC);
const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NHWC);
const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NHWC);
ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(input, &permuted_input, PermutationVector(2U, 0U, 1U)));
ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(weights, &permuted_weights, PermutationVector(2U, 0U, 1U)));
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayerNativeKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, dwc_weights_info,
dwc_info, conv_info, depth_multiplier, dilation,
&output_multipliers_shifts_info, &output_multipliers_shifts_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLPermute::validate(&permuted_output, output, PermutationVector(1U, 2U, 0U)));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayerNativeKernel::validate(input, weights, biases, output, dwc_weights_info, dwc_info, conv_info, depth_multiplier,
dilation, &output_multipliers_shifts_info, &output_multipliers_shifts_info));
}
return Status{};
}
void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
if(_needs_permute)
{
_permute_input_to_nhwc.run();
}
CLScheduler::get().enqueue(_dwc_native_kernel);
if(_needs_permute)
{
_permute_output_to_nchw.run();
}
}
void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerGeneric::prepare()
{
if(!_is_prepared)
{
if(_is_quantized)
{
_output_multipliers.map();
_output_shifts.map();
const unsigned int idx_ofms = get_data_layout_dimension_index(_output->info()->data_layout(), DataLayoutDimension::CHANNEL);
quantization::compute_quantized_multipliers_and_shifts(_input->info(),
_original_weights->info(),
_output->info(),
idx_ofms,
reinterpret_cast<int32_t *>(_output_multipliers.ptr_to_element(Coordinates(0))),
reinterpret_cast<int32_t *>(_output_shifts.ptr_to_element(Coordinates(0))));
_output_multipliers.unmap();
_output_shifts.unmap();
}
if(_needs_permute)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
_permuted_weights.allocator()->allocate();
_permute_weights_to_nhwc.run();
_original_weights->mark_as_unused();
}
_is_prepared = true;
}
}
CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::CLDepthwiseConvolutionLayerInternal3x3(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)),
_kernel(nullptr),
_border_handler(),
_permute_input_to_nchw(),
_permute_weights_to_nchw(),
_permute_output_to_nhwc(),
_reshape_weights(),
_permuted_input(),
_permuted_weights(),
_permuted_output(),
_output_multipliers(),
_output_shifts(),
_original_weights(nullptr),
_input(nullptr),
_output(nullptr),
_needs_permute(false),
_needs_weights_reshape(false),
_is_prepared(false),
_is_quantized(false)
{
}
void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
const GPUTarget gpu_target = CLScheduler::get().target();
// Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(CLDepthwiseConvolutionLayer3x3::validate(input->info(),
weights->info(),
biases != nullptr ? biases->info() : nullptr,
output->info(),
conv_info,
depth_multiplier,
act_info,
gpu_target,
dilation));
const bool is_nhwc = input->info()->data_layout() == DataLayout::NHWC;
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
_needs_permute = is_nhwc && (depth_multiplier > 1);
_needs_weights_reshape = is_nhwc && (depth_multiplier == 1) && _is_quantized;
_is_prepared = false;
_original_weights = weights;
_input = input;
_output = output;
ICLTensor *input_to_use = input;
const ICLTensor *weights_to_use = weights;
ICLTensor *output_to_use = output;
const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights->info()->data_type());
const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device()) && !is_quantized_per_channel;
const bool is_stride_1_dilation_1 = (is_stride_1 && dilation.x() == 1 && dilation.y() == 1);
DepthwiseConvolutionReshapeInfo info;
info.c0 = 4;
info.transpose = is_stride_1_dilation_1 && is_dot8_supported;
if(_needs_permute)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NHWC -> NCHW
_permute_input_to_nchw.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
_permuted_input.info()->set_data_layout(DataLayout::NCHW);
// Configure the function to transform the weights tensor from HWI -> IHW
_permute_weights_to_nchw.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
_permuted_weights.info()->set_data_layout(DataLayout::NCHW);
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
input_to_use = &_permuted_input;
weights_to_use = &_permuted_weights;
output_to_use = &_permuted_output;
_kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
}
else if(is_nhwc)
{
if(_needs_weights_reshape)
{
_reshape_weights.configure(weights, &_permuted_weights, info);
weights_to_use = &_permuted_weights;
}
_kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NHWCKernel>();
}
else
{
_kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
}
CLTensor *output_multipliers_to_use = nullptr;
CLTensor *output_shifts_to_use = nullptr;
if(_is_quantized)
{
const size_t idx_c = get_data_layout_dimension_index(weights->info()->data_layout(), DataLayoutDimension::CHANNEL);
const size_t num_filters = (is_quantized_per_channel) ? weights->info()->dimension(idx_c) : 1;
_output_multipliers.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32));
_output_shifts.allocator()->init(TensorInfo(TensorShape(num_filters), 1, DataType::S32));
output_multipliers_to_use = &_output_multipliers;
output_shifts_to_use = &_output_shifts;
}
// Configure kernel
_kernel->set_target(gpu_target);
_kernel->configure(input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier,
act_info, dilation, output_multipliers_to_use, output_shifts_to_use);
if(_is_quantized)
{
_output_multipliers.allocator()->allocate();
_output_shifts.allocator()->allocate();
}
// Permute output if needed
if(_needs_permute)
{
// Configure the function to transform the convoluted output to ACL's native ordering format NCHW
_permuted_output.info()->set_data_layout(DataLayout::NCHW);
_permute_output_to_nhwc.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
// Allocate tensors
_permuted_input.allocator()->allocate();
_permuted_output.allocator()->allocate();
}
// Configure border handler
PixelValue &&zero_value(0.f);
if(is_data_type_quantized_asymmetric(input->info()->data_type()))
{
zero_value = PixelValue(static_cast<uint8_t>(input->info()->quantization_info().uniform().offset));
}
_border_handler.configure(input_to_use, _kernel->border_size(), BorderMode::CONSTANT, zero_value);
}
Status CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
const PadStrideInfo &conv_info, unsigned int depth_multiplier, ActivationLayerInfo act_info, GPUTarget gpu_target, const Size2D &dilation)
{
return validate_arguments_3x3(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation);
}
void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
if(_needs_permute)
{
_permute_input_to_nchw.run();
}
CLScheduler::get().enqueue(_border_handler);
CLScheduler::get().enqueue(*_kernel);
if(_needs_permute)
{
_permute_output_to_nhwc.run();
}
}
void CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayerInternal3x3::prepare()
{
if(!_is_prepared)
{
if(_is_quantized)
{
_output_multipliers.map();
_output_shifts.map();
const unsigned int idx_ofms = get_data_layout_dimension_index(_output->info()->data_layout(), DataLayoutDimension::CHANNEL);
quantization::compute_quantized_multipliers_and_shifts(_input->info(),
_original_weights->info(),
_output->info(),
idx_ofms,
reinterpret_cast<int32_t *>(_output_multipliers.ptr_to_element(Coordinates(0))),
reinterpret_cast<int32_t *>(_output_shifts.ptr_to_element(Coordinates(0))));
_output_multipliers.unmap();
_output_shifts.unmap();
}
if(_needs_permute)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
_permuted_weights.allocator()->allocate();
_permute_weights_to_nchw.run();
_original_weights->mark_as_unused();
}
if(_needs_weights_reshape)
{
ARM_COMPUTE_ERROR_ON(_needs_permute);
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
_permuted_weights.allocator()->allocate();
CLScheduler::get().enqueue(_reshape_weights);
_original_weights->mark_as_unused();
}
_is_prepared = true;
}
}
CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_manager(std::move(memory_manager)), _depth_conv_func(DepthwiseConvolutionFunction::GENERIC), _func_3x3(), _func_generic()
{
}
void CLDepthwiseConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
ActivationLayerInfo act_info, const Size2D &dilation)
{
const GPUTarget gpu_target = CLScheduler::get().target();
_depth_conv_func = get_depthwiseconvolution_function(input->info(), weights->info(), (biases != nullptr) ? biases->info() : nullptr, output->info(), conv_info, depth_multiplier, act_info,
dilation, gpu_target);
switch(_depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
_func_3x3.set_memory_group(_memory_manager);
_func_3x3.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
break;
case DepthwiseConvolutionFunction::GENERIC:
{
_func_generic.set_memory_group(_memory_manager);
_func_generic.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
break;
default:
ARM_COMPUTE_ERROR("Unsupported DepthwiseConvolutionFunction");
}
}
Status CLDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation)
{
const GPUTarget gpu_target = CLScheduler::get().target();
DepthwiseConvolutionFunction depth_conv_func = get_depthwiseconvolution_function(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation, gpu_target);
switch(depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
return CLDepthwiseConvolutionLayerInternal3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation);
case DepthwiseConvolutionFunction::GENERIC:
return CLDepthwiseConvolutionLayerGeneric::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
default:
ARM_COMPUTE_ERROR("Unsupported DepthwiseConvolutionFunction");
}
}
DepthwiseConvolutionFunction CLDepthwiseConvolutionLayer::get_depthwiseconvolution_function(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier, ActivationLayerInfo act_info, const Size2D &dilation, GPUTarget gpu_target)
{
if(bool(CLDepthwiseConvolutionLayerInternal3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target, dilation)) && (is_data_type_float(input->data_type())
|| get_arch_from_target(gpu_target) == GPUTarget::MIDGARD))
{
return DepthwiseConvolutionFunction::OPTIMIZED;
}
else
{
return DepthwiseConvolutionFunction::GENERIC;
}
}
void CLDepthwiseConvolutionLayer::run()
{
switch(_depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
_func_3x3.run();
break;
case DepthwiseConvolutionFunction::GENERIC:
_func_generic.run();
break;
default:
ARM_COMPUTE_ERROR("DepthwiseConvolutionFunction not properly configured");
}
}
void CLDepthwiseConvolutionLayer::prepare()
{
switch(_depth_conv_func)
{
case DepthwiseConvolutionFunction::OPTIMIZED:
_func_3x3.prepare();
break;
case DepthwiseConvolutionFunction::GENERIC:
_func_generic.prepare();
break;
default:
ARM_COMPUTE_ERROR("DepthwiseConvolutionFunction not properly configured");
}
}
} // namespace arm_compute