blob: 54ff858eeb57b7f75d4f718e8adfd6984cb40084 [file] [log] [blame]
/*
* Copyright (c) 2017-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuSoftmaxKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/common/Registrars.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/Utils.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/cpu/kernels/softmax/list.h"
#include <vector>
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
/* Softmax */
static const std::vector<typename CpuSoftmaxKernel::SoftmaxKernel> available_kernels = {
{"neon_fp32_softmax",
[](const SoftmaxKernelDataTypeISASelectorData &data) { return (!data.is_log && data.dt == DataType::F32); },
REGISTER_FP32_NEON(neon_fp32_softmax<false>)},
{"neon_fp16_softmax",
[](const SoftmaxKernelDataTypeISASelectorData &data)
{ return (!data.is_log && data.dt == DataType::F16) && data.isa.fp16; },
REGISTER_FP16_NEON(neon_fp16_softmax<false>)},
{"neon_qu8_softmax",
[](const SoftmaxKernelDataTypeISASelectorData &data) { return (!data.is_log && data.dt == DataType::QASYMM8); },
REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_qasymm8_softmax<false>)},
{"neon_qs8_softmax",
[](const SoftmaxKernelDataTypeISASelectorData &data)
{ return (!data.is_log && data.dt == DataType::QASYMM8_SIGNED); },
REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_qasymm8_signed_softmax<false>)},
{"neon_fp32_log_softmax",
[](const SoftmaxKernelDataTypeISASelectorData &data) { return (data.is_log && data.dt == DataType::F32); },
REGISTER_FP32_NEON(neon_fp32_softmax<true>)},
{"neon_fp16_log_softmax",
[](const SoftmaxKernelDataTypeISASelectorData &data)
{ return (data.is_log && data.dt == DataType::F16) && data.isa.fp16; },
REGISTER_FP16_NEON(neon_fp16_softmax<true>)},
{"neon_qu8_log_softmax",
[](const SoftmaxKernelDataTypeISASelectorData &data) { return (data.is_log && data.dt == DataType::QASYMM8); },
REGISTER_QASYMM8_NEON(arm_compute::cpu::neon_qasymm8_softmax<true>)},
{"neon_qs8_log_softmax",
[](const SoftmaxKernelDataTypeISASelectorData &data)
{ return (data.is_log && data.dt == DataType::QASYMM8_SIGNED); },
REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::neon_qasymm8_signed_softmax<true>)},
};
Status validate_arguments_softmax(
const ITensorInfo &src, const ITensorInfo &dst, float beta, int axis, const ITensorInfo &tmp, bool is_log)
{
ARM_COMPUTE_UNUSED(beta);
// Check input
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(axis < 0 || axis > 3);
const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src.data_type());
// Check output if configured
if (dst.total_size() != 0)
{
const QuantizationInfo output_quantization =
is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(src.data_type(), is_log)
: dst.quantization_info();
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &dst);
ARM_COMPUTE_RETURN_ERROR_ON(dst.quantization_info() != output_quantization);
}
// Check tmp if configured
if (tmp.total_size() != 0)
{
// We have temporary storage only if src data type is quantized.
// Therefore, tmp data type must be F32
ARM_COMPUTE_RETURN_ERROR_ON(tmp.data_type() != DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(!is_quantized_asymmetric);
// We could potentially reduce tmp memory if we could predict or make an assumption
// on the maximum number of threads that will run in parallel.
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(&src, &tmp);
}
return Status{};
}
} // namespace
const std::vector<typename CpuSoftmaxKernel::SoftmaxKernel> &CpuSoftmaxKernel::get_available_kernels()
{
return available_kernels;
}
void CpuSoftmaxKernel::configure(
const ITensorInfo *src, ITensorInfo *dst, float beta, bool is_log, int axis, ITensorInfo *tmp)
{
_axis = axis;
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst, tmp);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_softmax(*src, *dst, beta, axis, *tmp, is_log));
// Configure kernel window
const bool is_quantized_asymmetric = is_data_type_quantized_asymmetric(src->data_type());
// Output auto initialization if not yet initialized
const QuantizationInfo output_quantization =
is_quantized_asymmetric ? arm_compute::get_softmax_output_quantization_info(src->data_type(), is_log)
: dst->quantization_info();
auto_init_if_empty(*dst, TensorInfo(*src).set_quantization_info(output_quantization).reset_padding());
// Tmp auto initialization if not yet initialized and src is quantized
if (is_quantized_asymmetric)
{
auto_init_if_empty(*tmp, TensorInfo(*src).set_data_type(DataType::F32).reset_padding());
}
const auto *uk = CpuSoftmaxKernel::get_implementation(
SoftmaxKernelDataTypeISASelectorData{src->data_type(), CPUInfo::get().get_isa(), is_log});
ARM_COMPUTE_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
std::string kernel_name = is_log ? std::string("CpuLogSoftmaxKernel") : std::string("CpuSoftmaxKernel");
_beta = beta;
_run_method = uk->ukernel;
_name = kernel_name.append("/").append(uk->name);
Window win;
int vec_size = 16 / dst->element_size();
if (_axis == 0)
{
win = calculate_max_window(*dst, Steps());
/// TODO:Check dimensions > 0 for holes only. For this, we need
/// a utility function checking if there are holes after some dimension.
if (!has_holes(*dst, dst->num_dimensions() - 1))
{
win = win.collapse(win, Window::DimY);
}
}
else if (_axis > 0 && _axis <= 3)
{
win = calculate_max_window(*dst, Steps(vec_size));
}
else
{
ARM_COMPUTE_ERROR("Invalid axis");
}
win.set(_axis, Window::Dimension(0, 1, 1));
ICpuKernel<CpuSoftmaxKernel>::configure(win);
}
Status CpuSoftmaxKernel::validate(
const ITensorInfo *src, const ITensorInfo *dst, float beta, int axis, bool is_log, const ITensorInfo *tmp)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst, tmp);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_softmax(*src, *dst, beta, axis, *tmp, is_log));
return Status{};
}
void CpuSoftmaxKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel<CpuSoftmaxKernel>::window(), window);
ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
const auto src = tensors.get_const_tensor(TensorType::ACL_SRC_0);
auto dst = tensors.get_tensor(TensorType::ACL_DST_0);
if (is_data_type_quantized_asymmetric(src->info()->data_type()))
{
auto tmp = tensors.get_tensor(TensorType::ACL_DST_1);
unsigned int num_elems_processed_per_iteration;
if (_axis == 0)
{
num_elems_processed_per_iteration = src->info()->valid_region().shape[_axis];
}
else
{
//16 QASYMM8/QASYMM8_SIGNED elements can fit into the 16-byte vectors.
num_elems_processed_per_iteration = 16;
}
const unsigned int tmp_size_for_thread = tmp->info()->element_size() * num_elems_processed_per_iteration;
void *tmp_for_thread = tmp->buffer() + (info.thread_id * tmp_size_for_thread);
_run_method(src, tmp_for_thread, dst, _beta, _axis, window);
}
else
{
_run_method(src, nullptr, dst, _beta, _axis, window);
}
}
const char *CpuSoftmaxKernel::name() const
{
return _name.c_str();
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute