blob: df8be0091d55e4041d182b4c0dfdc9df733b0bf6 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "tile_helpers.h"
//! @cond Doxygen_Suppress
/** OpenCL kernel to compute the direct convolution.
*
* @note Data layout supported: NDHWC
* @note Data type supported: F32/F16
* @note The accumulation data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE_PROMOTED=half)
* @note The convolution padding (left, top and front) must be passed at compile time using -DPAD_LEFT, -DPAD_TOP and -DPAD_FRONT (e.g. -DPAD_LEFT=2, -DPAD_TOP=2, -DPAD_FRONT=2)
* @note The convolution strides must be passed at compile time using -DSTRIDE_X, -DSTRIDE_Y and -DSTRIDE_Z (e.g. -DSTRIDE_X=2, -DSTRIDE_Y=2, -DSTRIDE_Z=2)
* @note The spatial dimensions of the weights must be passed at compile time using -DWEI_WIDTH, -DWEI_HEIGHT and -DWEI_DEPTH (e.g. -DWEI_WIDTH=9, -DWEI_HEIGHT=9, -DWEI_DEPTH=9)
* @note The spatial dimensions of the source tensor must be passed at compile time using -DSRC_WIDTH, -DSRC_HEIGHT and -DSRC_DEPTH (e.g. -DSRC_WIDTH=96, -DSRC_HEIGHT=64, -DSRC_DEPTH=32)
* @note The spatial dimensions of the destination tensor must be passed at compile time using -DDST_WIDTH, -DDST_HEIGHT and -DDST_DEPTH (e.g. -DDST_WIDTH=96, -DDST_HEIGHT=64, -DDST_DEPTH=32)
* @note The channels of the source tensor must be passed at compile time using -DSRC_CHANNELS (e.g. -DSRC_CHANNELS=64)
* @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
* @note The number of M0 rows (width*height) to process must be passed at compile time using -DM0 (e.g. -DM0=2)
* @note The number of N0 output channels to process must be passed at compile time using -DN0 (e.g. -DN0=2)
* @note The number of K0 inner accumulations must be passed at compile time using -DK0 (e.g. -DK0=2)
* @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_N0 (e.g. -DPARTIAL_N0=1)
* @note Only the following configurations of M0, N0 and K0 are currently supported:
* - M0 = 1, 2, 3, 4, 5, .... n
* - N0 = 2, 3, 4, 8, 16
* - K0 = 2, 3, 4, 8, 16
*
* @note If biases are used then -DHAS_BIAS has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data type: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] src_step_w src_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data type: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in W dimension (in bytes)
* @param[in] dst_step_w dst_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] wei_ptr Pointer to the weights tensor. Supported data type: same as @p src_ptr
* @param[in] wei_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] wei_step_x wei_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] wei_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] wei_step_y wei_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] wei_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] wei_step_z wei_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] wei_stride_w Stride of the weights tensor in W dimension (in bytes)
* @param[in] wei_step_w wei_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] wei_offset_first_element_in_bytes The offset of the first element in the weights matrix
* @param[in] bia_ptr (Optional) Pointer to the bias tensor Supported data type: same as @p src_ptr
* @param[in] bia_stride_x (Optional) Stride of the bias tensor in X dimension (in bytes)
* @param[in] bia_step_x (Optional) bia_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
*/
//! @endcond
__kernel void direct_convolution3d_ndhwc(
TENSOR4D(src, BUFFER),
TENSOR4D(dst, BUFFER),
TENSOR4D(wei, BUFFER)
#if defined(HAS_BIAS)
,
VECTOR_DECLARATION(bia)
#endif // defined(HAS_BIAS)
)
{
#define _IWEI_WIDTH WEI_WIDTH
#define _IWEI_HEIGHT WEI_HEIGHT
#define _IWEI_DEPTH WEI_DEPTH
#define _ISRC_WIDTH SRC_WIDTH
#define _ISRC_HEIGHT SRC_HEIGHT
#define _ISRC_DEPTH SRC_DEPTH
#define _ISRC_CHANNELS SRC_CHANNELS
#define _IDST_WIDTH DST_WIDTH
#define _IDST_HEIGHT DST_HEIGHT
#define _IDST_DEPTH DST_DEPTH
#define _IDST_CHANNELS DST_CHANNELS
#define _IY_MULTIPLIER (_IWEI_WIDTH * _IWEI_HEIGHT * _IWEI_DEPTH)
const int cout = GET_SPATIAL_IDX(0, N0, PARTIAL_N0); // OFM
const int mout = GET_SPATIAL_IDX(1, M0, 0); // WIDTH x HEIGHT x DEPTH
const int bout = GET_SPATIAL_IDX(2, 1, 0); // BATCH SIZE IDX
TILE(int, M0, 1, xi);
TILE(int, M0, 1, yi);
TILE(int, M0, 1, zi);
// Convert the linear index to coordinate
LOOP_UNROLLING(int, i, 0, 1, M0,
{
xi[i].v = ((mout + i) % _IDST_WIDTH) * STRIDE_X;
yi[i].v = (((mout + i) / _IDST_WIDTH) % _IDST_HEIGHT) * STRIDE_Y;
zi[i].v = (((mout + i) / (_IDST_WIDTH * _IDST_HEIGHT)) % _IDST_DEPTH) * STRIDE_Z;
xi[i].v -= PAD_LEFT;
yi[i].v -= PAD_TOP;
zi[i].v -= PAD_FRONT;
})
// Initialize the accumulators
TILE(ACC_DATA_TYPE, M0, N0, c);
LOOP_UNROLLING(int, i, 0, 1, M0,
{
c[i].v = (ACC_DATA_TYPE)0;
})
for(int i = 0; i < _IY_MULTIPLIER; ++i)
{
int ck = 0;
int xk = i % _IWEI_WIDTH;
int yk = (i / _IWEI_WIDTH) % _IWEI_HEIGHT;
int zk = i / (_IWEI_WIDTH * _IWEI_HEIGHT);
__global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes;
int k = 0;
for(; k <= (_ISRC_CHANNELS - K0); k += K0)
{
TILE(DATA_TYPE, M0, K0, a);
TILE(DATA_TYPE, N0, K0, b);
LOOP_UNROLLING(int, i, 0, 1, M0,
{
a[i].v = (DATA_TYPE)0;
})
// Load tile from the src tensor
T_LOAD_NDHWC_INDIRECT(DATA_TYPE, M0, K0, BUFFER, src, bout, zk, yk, xk, ck, _ISRC_WIDTH, _ISRC_HEIGHT, _ISRC_DEPTH, src_stride_y, xi, yi, zi, a);
// Load tile from the weights tensor
const int b_offs = k + (xk * _ISRC_CHANNELS) + (yk * _ISRC_CHANNELS * _IWEI_WIDTH) + (zk * _ISRC_CHANNELS * _IWEI_WIDTH * _IWEI_HEIGHT);
LOOP_UNROLLING(int, i, 0, 1, N0,
{
if((cout + i) < _IDST_CHANNELS)
{
LOOP_UNROLLING(int, j, 0, 1, K0,
{
b[i].s[j] = *(__global DATA_TYPE *)(wei_ptr + wei_offset_first_element_in_bytes + (cout + i) * sizeof(DATA_TYPE) + j * wei_stride_y + b_offs * wei_stride_y);
})
}
})
// Compute the matrix multiplication between two tiles
T_MMUL(DATA_TYPE, DATA_TYPE, ACC_DATA_TYPE, M0, N0, K0, NT, T, a, b, c);
ck += K0;
}
#if((_ISRC_CHANNELS % K0) != 0)
// Left-over accumulations
for(; k < _ISRC_CHANNELS; ++k)
{
TILE(DATA_TYPE, M0, 1, a);
TILE(DATA_TYPE, N0, 1, b);
LOOP_UNROLLING(int, i, 0, 1, M0,
{
a[i].v = (DATA_TYPE)0;
})
// Load tile from the src tensor
T_LOAD_NDHWC_INDIRECT(DATA_TYPE, M0, 1, BUFFER, src, bout, zk, yk, xk, ck, _ISRC_WIDTH, _ISRC_HEIGHT, _ISRC_DEPTH, src_stride_y, xi, yi, zi, a);
// Load tile from the weights tensor
const int b_offs = k + (xk * _ISRC_CHANNELS) + (yk * _ISRC_CHANNELS * _IWEI_WIDTH) + (zk * _ISRC_CHANNELS * _IWEI_WIDTH * _IWEI_HEIGHT);
LOOP_UNROLLING(int, i, 0, 1, N0,
{
if((cout + i) < _IDST_CHANNELS)
{
b[i].v = *(__global DATA_TYPE *)(wei_ptr + wei_offset_first_element_in_bytes + (cout + i) * sizeof(DATA_TYPE) + b_offs * wei_stride_y);
}
})
// // Compute the matrix multiplication between two tiles
T_MMUL(DATA_TYPE, DATA_TYPE, ACC_DATA_TYPE, M0, N0, 1, NT, T, a, b, c);
++ck;
}
#endif // ((_ISRC_CHANNELS % K0) != 0)
}
#if defined(HAS_BIAS)
TILE(DATA_TYPE, 1, N0, bias0);
if((cout + N0) <= _IDST_CHANNELS)
{
bias0[0].v = VLOAD(N0)(0, (__global DATA_TYPE *)(bia_ptr + bia_offset_first_element_in_bytes + cout * sizeof(DATA_TYPE)));
}
else
{
VLOAD_PARTIAL(N0, PARTIAL_N0)
(bias0[0].v, 0, (__global DATA_TYPE *)(bia_ptr + bia_offset_first_element_in_bytes + cout * sizeof(DATA_TYPE)));
}
// c = c + bias[broadcasted]
T_ADD_BROADCAST_X(ACC_DATA_TYPE, M0, N0, c, bias0, c);
#endif // HAS_BIAS
TILE(uint, M0, 1, dst_indirect_y);
// Calculate the destination indirect Y
LOOP_UNROLLING(int, i, 0, 1, M0,
{
dst_indirect_y[i].v = (uint)min(mout + i, (int)(_IDST_WIDTH *_IDST_HEIGHT * _IDST_DEPTH) - 1);
dst_indirect_y[i].v += bout * (int)(_IDST_WIDTH *_IDST_HEIGHT * _IDST_DEPTH);
})
bool x_cond = PARTIAL_N0 != 0 && get_global_id(0) == 0;
// Store the tile in reverse order so the invalid values are overwritten with the valid ones
T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_N0, BUFFER, dst, cout, dst_stride_y, x_cond, c, dst_indirect_y);
}