blob: a24ba8913ec3923c0fc07b2fe5684f9ecd3f686a [file] [log] [blame]
/*
* Copyright (c) 2017-2021, 2023-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ACL_TESTS_VALIDATION_FIXTURES_ACTIVATIONLAYERFIXTURE_H
#define ACL_TESTS_VALIDATION_FIXTURES_ACTIVATIONLAYERFIXTURE_H
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/framework/ParametersLibrary.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/ActivationLayer.h"
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ActivationValidationGenericFixture : public framework::Fixture
{
public:
void setup(TensorShape shape, bool in_place, ActivationLayerInfo::ActivationFunction function, float alpha_beta, DataType data_type, QuantizationInfo quantization_info)
{
ActivationLayerInfo info(function, alpha_beta, alpha_beta);
_in_place = in_place;
_data_type = data_type;
_output_quantization_info = calculate_output_quantization_info(_data_type, info, quantization_info);
_input_quantization_info = in_place ? _output_quantization_info : quantization_info;
_function = function;
_target = compute_target(shape, info);
_reference = compute_reference(shape, info);
}
protected:
std::vector<T> get_boundary_values(T min, T max)
{
// This function will return a vector filled with the following values that can
// represent two partitions derived from equivalent partitioning.
// * Lower parition: min, min + delta, lower quarter (nominal), center - delta
// * Upper partition: center, center + delta, upper quarter (nominal), max - delta, max
const auto delta = is_data_type_float(_data_type) ? T(0.1f) : T(1);
const auto center_value = (min + max) / 2;
const auto lower_quarter = (min + center_value) / 2;
const auto upper_quarter = (center_value + max) / 2;
std::vector<T> boundary_values{};
// To ensure all the inserted values are within the given range after subtracing/adding delta
auto insert_values = [&boundary_values, &min, &max](const std::initializer_list<T> &new_values)
{
for(auto &v : new_values)
{
if(v >= min && v <= max)
{
boundary_values.emplace_back(v);
}
}
};
insert_values({ min, static_cast<T>(min + delta), static_cast<T>(lower_quarter), static_cast<T>(center_value - delta) }); // lower partition
insert_values({ static_cast<T>(center_value), static_cast<T>(center_value + delta), static_cast<T>(upper_quarter), static_cast<T>(max - delta), max }); // upper partition
return boundary_values;
}
template <typename U>
void fill(U &&tensor)
{
if(is_data_type_float(_data_type))
{
float min_bound = 0;
float max_bound = 0;
std::tie(min_bound, max_bound) = get_activation_layer_test_bounds<T>(_function, _data_type);
library->fill_static_values(tensor, get_boundary_values(static_cast<T>(min_bound), static_cast<T>(max_bound)));
}
else
{
PixelValue min{};
PixelValue max{};
std::tie(min, max) = get_min_max(tensor.data_type());
library->fill_static_values(tensor, get_boundary_values(min.get<T>(), max.get<T>()));
}
}
TensorType compute_target(const TensorShape &shape, ActivationLayerInfo info)
{
// Create tensors
TensorType src = create_tensor<TensorType>(shape, _data_type, 1, _input_quantization_info, DataLayout::NCHW);
TensorType dst = create_tensor<TensorType>(shape, _data_type, 1, _output_quantization_info, DataLayout::NCHW);
// Create and configure function
FunctionType act_layer;
TensorType *dst_ptr = _in_place ? nullptr : &dst;
act_layer.configure(&src, dst_ptr, info);
ARM_COMPUTE_ASSERT(src.info()->is_resizable());
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
// Allocate tensors
src.allocator()->allocate();
ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
if(!_in_place)
{
dst.allocator()->allocate();
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
}
// Fill tensors
fill(AccessorType(src));
// Compute function
act_layer.run();
if(_in_place)
{
return src;
}
else
{
return dst;
}
}
SimpleTensor<T> compute_reference(const TensorShape &shape, ActivationLayerInfo info)
{
// Create reference
SimpleTensor<T> src{ shape, _data_type, 1, _input_quantization_info };
// Fill reference
fill(src);
return reference::activation_layer<T>(src, info, _output_quantization_info);
}
private:
QuantizationInfo calculate_output_quantization_info(DataType dt, const ActivationLayerInfo &act_info, const QuantizationInfo &default_qinfo)
{
auto qasymm8_max = float(std::numeric_limits<uint8_t>::max()) + 1.f;
auto qasymm8_signed_max = float(std::numeric_limits<int8_t>::max()) + 1.f;
auto qsymm16_max = float(std::numeric_limits<int16_t>::max()) + 1.f;
switch(act_info.activation())
{
case ActivationLayerInfo::ActivationFunction::TANH:
if(dt == DataType::QSYMM16)
{
return QuantizationInfo(1.f / qsymm16_max, 0);
}
else if(dt == DataType::QASYMM8)
{
return QuantizationInfo(1.f / (0.5 * qasymm8_max), int(0.5 * qasymm8_max));
}
else if(dt == DataType::QASYMM8_SIGNED)
{
return QuantizationInfo(1.f / qasymm8_signed_max, 0);
}
else
{
return default_qinfo;
}
case ActivationLayerInfo::ActivationFunction::LOGISTIC:
if(dt == DataType::QSYMM16)
{
return QuantizationInfo(1.f / qsymm16_max, 0);
}
else if(dt == DataType::QASYMM8)
{
return QuantizationInfo(1.f / qasymm8_max, 0);
}
else if(dt == DataType::QASYMM8_SIGNED)
{
return QuantizationInfo(1.f / (2.f * qasymm8_signed_max), -int(qasymm8_signed_max));
}
else
{
return default_qinfo;
}
default:
return default_qinfo;
}
}
protected:
TensorType _target{};
SimpleTensor<T> _reference{};
bool _in_place{};
QuantizationInfo _input_quantization_info{};
QuantizationInfo _output_quantization_info{};
DataType _data_type{};
ActivationLayerInfo::ActivationFunction _function{};
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ActivationValidationFixture : public ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
void setup(TensorShape shape, bool in_place, ActivationLayerInfo::ActivationFunction function, float alpha_beta, DataType data_type)
{
ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(shape, in_place, function, alpha_beta, data_type, QuantizationInfo());
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T>
class ActivationValidationQuantizedFixture : public ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>
{
public:
void setup(TensorShape shape, bool in_place, ActivationLayerInfo::ActivationFunction function, float alpha_beta, DataType data_type, QuantizationInfo quantization_info)
{
ActivationValidationGenericFixture<TensorType, AccessorType, FunctionType, T>::setup(shape, in_place, function, alpha_beta, data_type, quantization_info);
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif // ACL_TESTS_VALIDATION_FIXTURES_ACTIVATIONLAYERFIXTURE_H