blob: 335267522b36f4ef34e9f739b1d7830c8d690c45 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h"
#include "arm_compute/core/NEON/kernels/arm32/NEGEMMAArch32Kernel.h"
#include "arm_compute/core/NEON/kernels/arm64/NEGEMMAArch64Kernel.h"
#include "arm_compute/core/NEON/kernels/arm64/NEGEMMAArch64NativeKernel.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "support/ToolchainSupport.h"
namespace arm_compute
{
#include "arm_compute/core/NEON/kernels/assembly/gemm_interleaved.hpp"
#include "arm_compute/core/NEON/kernels/assembly/kernels/a32_sgemm_8x6.hpp"
#include "arm_compute/core/NEON/kernels/assembly/kernels/a64_sgemm_12x8.hpp"
} // namespace arm_compute
#include <cmath>
#include <tuple>
namespace arm_compute
{
namespace
{
TensorShape get_reshaped_weights_shape(const ITensorInfo *weights, bool append_bias)
{
const unsigned int mat_weights_cols = weights->dimension(3);
const unsigned int mat_weights_rows = weights->dimension(0) * weights->dimension(1) * weights->dimension(2) + (append_bias ? 1 : 0);
return TensorShape(mat_weights_cols, mat_weights_rows);
}
} // namespace
NEConvolutionLayerReshapeWeights::NEConvolutionLayerReshapeWeights(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false)
{
}
void NEConvolutionLayerReshapeWeights::configure(const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose1xW)
{
// Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output);
ARM_COMPUTE_ERROR_THROW_ON(NEConvolutionLayerReshapeWeights::validate(weights->info(),
(biases != nullptr) ? biases->info() : nullptr,
output->info(),
transpose1xW));
// Check if bias are present, if yes they will be embedded to the weights matrix
const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type());
//const unsigned bias_element = (append_biases) ? 1 : 0;
const ITensor *biases_to_use = (append_biases) ? biases : nullptr;
_transpose1xW = transpose1xW;
if(transpose1xW)
{
// Create tensor to store the reshaped weights
TensorInfo info_wr = weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(get_reshaped_weights_shape(weights->info(), append_biases));
_weights_reshaped.allocator()->init(info_wr);
_memory_group.manage(&_weights_reshaped);
_weights_reshape_kernel.configure(weights, biases, &_weights_reshaped);
_weights_transposed_kernel.configure(&_weights_reshaped, output);
_weights_reshaped.allocator()->allocate();
}
else
{
_weights_reshape_kernel.configure(weights, biases_to_use, output);
}
output->info()->set_quantization_info(weights->info()->quantization_info());
}
Status NEConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, bool transpose1xW)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
if(!is_data_type_quantized_asymmetric(weights->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output);
}
// Check if bias are present, if yes they will be embedded to the weights matrix
const bool append_bias = (biases != nullptr);
if(append_bias)
{
ARM_COMPUTE_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type()));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(weights, biases);
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
// Checks performed when biases are present
if(append_bias)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
if(transpose1xW)
{
TensorInfo weights_reshaped = weights->clone()->set_tensor_shape(get_reshaped_weights_shape(weights, append_bias));
ARM_COMPUTE_RETURN_ON_ERROR(NEWeightsReshapeKernel::validate(weights, biases, &weights_reshaped));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(&weights_reshaped, output));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEWeightsReshapeKernel::validate(weights, biases, output));
}
return Status{};
}
void NEConvolutionLayerReshapeWeights::run()
{
_memory_group.acquire();
NEScheduler::get().schedule(&_weights_reshape_kernel, 3);
if(_transpose1xW)
{
NEScheduler::get().schedule(&_weights_transposed_kernel, Window::DimY);
}
_memory_group.release();
}
namespace
{
TensorShape get_reshaped_weights_shape_conv(const ITensorInfo *weights, bool append_bias, bool is_fully_connected_convolution)
{
unsigned int mat_weights_cols = weights->dimension(3);
unsigned int mat_weights_rows = weights->dimension(0) * weights->dimension(1) * weights->dimension(2) + (append_bias ? 1 : 0);
if(is_fully_connected_convolution)
{
// Create tensor to store the reshaped weights
return TensorShape(mat_weights_cols, mat_weights_rows);
}
else
{
// Create tensor to store transposed weights
const float transpose_width = 16.0f / weights->element_size();
return TensorShape(mat_weights_rows * static_cast<unsigned int>(transpose_width), static_cast<unsigned int>(std::ceil(mat_weights_cols / transpose_width)));
}
}
Status validate_and_initialize_values(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const PadStrideInfo &conv_info, const WeightsInfo &weights_info, DataType &dt,
bool &append_bias,
bool &are_weights_reshaped, unsigned int &kernel_width, unsigned int &kernel_height,
bool &is_fully_connected_convolution, bool &is_interleaved_transposed, bool &is_quantized,
unsigned int &mat_weights_cols, unsigned int &mat_weights_rows,
unsigned int &conv_w, unsigned int &conv_h)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON(!weights_info.are_reshaped() && weights->dimension(2) != input->dimension(2));
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
ARM_COMPUTE_RETURN_ERROR_ON(weights_info.are_reshaped() && is_data_type_quantized_asymmetric(input->data_type()));
dt = input->data_type();
is_quantized = is_data_type_quantized_asymmetric(dt);
if(biases != nullptr)
{
if(is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases);
ARM_COMPUTE_RETURN_ERROR_ON(!weights_info.are_reshaped() && biases->dimension(0) != weights->dimension(3));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
append_bias = (biases != nullptr) && (!is_quantized);
are_weights_reshaped = weights_info.are_reshaped();
kernel_width = (are_weights_reshaped) ? weights_info.kernel_size().first : weights->dimension(0);
kernel_height = (are_weights_reshaped) ? weights_info.kernel_size().second : weights->dimension(1);
mat_weights_cols = weights->dimension(3);
mat_weights_rows = weights->dimension(0) * weights->dimension(1) * weights->dimension(2) + (append_bias ? 1 : 0);
std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(0), input->dimension(1), kernel_width, kernel_height,
conv_info);
// Check if its a "fully connected" convolution
is_fully_connected_convolution = ((conv_w == 1) && (conv_h == 1));
is_interleaved_transposed = (!is_fully_connected_convolution && !is_quantized);
return Status{};
}
} // namespace
NEConvolutionLayer::NEConvolutionLayer(const std::shared_ptr<IMemoryManager> &memory_manager)
: _memory_group(memory_manager), _input_im2col_kernel(), _input_interleave_kernel(), _reshape_weights(), _mm_kernel(), _mm_optimised_kernel(nullptr), _mm_gemmlowp(memory_manager),
_gemmlowp_output_stage(), _output_col2im_kernel(), _input_im2col_reshaped(), _input_interleaved_reshaped(), _weights_reshaped(), _gemm_output(), _tmp_output(), _workspace(), _append_bias(false),
_is_fully_connected_convolution(false), _are_weights_reshaped(false), _is_quantized(false), _is_interleaved_transposed(false)
{
}
void NEConvolutionLayer::configure_mm(const ITensor *input, const ITensor *weights, ITensor *output)
{
if(_is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = input->info()->quantization_info();
const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
_mm_gemmlowp.configure(input, weights, output, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
// Revert back QuantizatioInfo as input and weights could be used in other convolution layers
input->info()->set_quantization_info(input_quantization_info);
weights->info()->set_quantization_info(weights_quantization_info);
}
else
{
_mm_kernel.configure(input, weights, output, 1.f);
}
}
void NEConvolutionLayer::configure_asm_mm(const struct CPUInfo &ci, int M, int N, int K)
{
ARM_COMPUTE_UNUSED(ci);
ARM_COMPUTE_UNUSED(M);
ARM_COMPUTE_UNUSED(N);
ARM_COMPUTE_UNUSED(K);
#if defined(__arm__) || defined(__aarch64__)
#if defined(__arm__)
GemmInterleaved<sgemm_8x6, float, float> gemm(&ci, M, N, K, false, false);
#elif defined(__aarch64__)
GemmInterleaved<sgemm_12x8, float, float> gemm(&ci, M, N, K, false, false);
#endif /* defined(__arm__) || defined(__aarch64__) */
constexpr size_t alignment = 4096;
_workspace.allocator()->init(TensorInfo(TensorShape{ (gemm.get_working_size() + alignment - 1) * NEScheduler::get().num_threads() }, 1, DataType::U8));
_memory_group.manage(&_workspace);
#endif /* defined(__arm__) || defined(__aarch64__) */
}
void NEConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
DataType dt{};
unsigned int kernel_width = 0;
unsigned int kernel_height = 0;
unsigned int mat_weights_cols = 0;
unsigned int mat_weights_rows = 0;
unsigned int conv_w = 0;
unsigned int conv_h = 0;
Status status = validate_and_initialize_values(input->info(), weights->info(), (biases == nullptr) ? nullptr : biases->info(), conv_info, weights_info, dt, _append_bias, _are_weights_reshaped,
kernel_width, kernel_height,
_is_fully_connected_convolution, _is_interleaved_transposed, _is_quantized,
mat_weights_cols, mat_weights_rows, conv_w, conv_h);
ARM_COMPUTE_ERROR_THROW_ON(status);
const unsigned int fixed_point_position = input->info()->fixed_point_position();
const ITensor *biases_to_use = (_append_bias) ? biases : nullptr;
#if defined(__arm__)
if(NEScheduler::get().cpu_info().CPU == CPUTarget::ARMV7 && dt == DataType::F32)
{
_mm_optimised_kernel = support::cpp14::make_unique<NEGEMMAArch32Kernel>();
}
#elif defined(__aarch64__)
if(NEScheduler::get().cpu_info().CPU >= CPUTarget::ARMV8 && dt == DataType::F32)
{
_mm_optimised_kernel = support::cpp14::make_unique<NEGEMMAArch64Kernel>();
}
#endif /* defined(__arm__) || defined(__aarch64__) */
// Reshape weights if needed
if(_mm_optimised_kernel != nullptr)
{
if(_are_weights_reshaped)
{
mat_weights_cols = weights_info.num_kernels();
mat_weights_rows = weights->info()->dimension(1);
}
else
{
TensorShape reshaped_weights_shape{ mat_weights_cols, mat_weights_rows };
// Create tensor to store the reshaped weights
_weights_reshaped.allocator()->init(TensorInfo(reshaped_weights_shape, 1, dt, fixed_point_position));
_reshape_weights.configure(weights, biases, &_weights_reshaped, false /* 1xW transpose */);
weights = &_weights_reshaped;
}
}
else
{
if(_are_weights_reshaped)
{
if(_is_fully_connected_convolution || _is_quantized)
{
mat_weights_cols = weights_info.num_kernels();
mat_weights_rows = weights->info()->dimension(1);
}
else
{
const unsigned int transpose_width = 16 / input->info()->element_size();
mat_weights_cols = weights_info.num_kernels();
mat_weights_rows = weights->info()->dimension(0) / transpose_width + (_append_bias ? 1 : 0);
}
}
else
{
TensorShape reshaped_weights_shape;
if(_is_fully_connected_convolution || _is_quantized)
{
reshaped_weights_shape = TensorShape{ mat_weights_cols, mat_weights_rows };
}
else
{
// Create tensor to store transposed weights
const float transpose_width = 16.0f / input->info()->element_size();
reshaped_weights_shape = TensorShape{ mat_weights_rows *static_cast<unsigned int>(transpose_width),
static_cast<unsigned int>(std::ceil(mat_weights_cols / transpose_width)) };
}
// Create tensor to store the reshaped weights
_weights_reshaped.allocator()->init(TensorInfo(reshaped_weights_shape, 1, dt, fixed_point_position));
_reshape_weights.configure(weights, biases_to_use, &_weights_reshaped, _is_interleaved_transposed /* 1xW transpose */);
weights = &_weights_reshaped;
}
}
// Create tensor to store im2col reshaped inputs
const unsigned int mat_input_cols = mat_weights_rows;
const unsigned int mat_input_rows = conv_w * conv_h;
TensorShape shape_im2col(input->info()->tensor_shape());
shape_im2col.set(0, mat_input_cols);
shape_im2col.set(1, mat_input_rows);
shape_im2col.set(2, 1);
_input_im2col_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
_memory_group.manage(&_input_im2col_reshaped);
// Create tensor (interleave) to prepare input tensor for GEMM
if(!_is_fully_connected_convolution && _mm_optimised_kernel == nullptr)
{
TensorShape shape_interleaved(shape_im2col);
shape_interleaved.set(0, shape_interleaved.x() * 4);
shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f));
_input_interleaved_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_interleaved));
_memory_group.manage(&_input_interleaved_reshaped);
}
// Create GEMM output tensor
TensorShape shape_gemm(_input_im2col_reshaped.info()->tensor_shape());
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, mat_input_rows);
const DataType gemm_data_type = _is_quantized ? DataType::S32 : dt;
// GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input.
TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->info()->fixed_point_position());
info_gemm.set_quantization_info(output->info()->quantization_info());
_gemm_output.allocator()->init(info_gemm);
_memory_group.manage(&_gemm_output);
// Configure kernels
// Configure im2col
_input_im2col_kernel.configure(input, &_input_im2col_reshaped, Size2D(kernel_width, kernel_height), conv_info, _append_bias);
// Configure matrix multiply
if(_mm_optimised_kernel != nullptr)
{
struct CPUInfo ci = NEScheduler::get().cpu_info();
const int M = _gemm_output.info()->tensor_shape().y();
const int N = _gemm_output.info()->tensor_shape().x();
const int K = _input_im2col_reshaped.info()->tensor_shape().x();
#if defined(__aarch64__)
if((N <= 128) && (K <= 128))
{
_mm_optimised_kernel = support::cpp14::make_unique<NEGEMMAArch64NativeKernel>();
}
else
#endif /* defined(__aarch64__) */
{
configure_asm_mm(ci, M, N, K);
}
// Configure matrix multiplication kernel
_mm_optimised_kernel->configure(&_input_im2col_reshaped, weights, &_gemm_output, &_workspace);
_workspace.allocator()->allocate();
}
else
{
if(_is_interleaved_transposed)
{
// Configure GEMMInterleave4x4. _input_interleaved_reshaped will be auto configured in the kernel
_input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped);
// Configure GEMM
configure_mm(&_input_interleaved_reshaped, weights, &_gemm_output);
_input_interleaved_reshaped.allocator()->allocate();
}
else
{
configure_mm(&_input_im2col_reshaped, weights, &_gemm_output);
}
}
_input_im2col_reshaped.allocator()->allocate();
// Configure output stage for quantized case
if(_is_quantized)
{
const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();
float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
int output_multiplier, output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_memory_group.manage(&_tmp_output);
_gemmlowp_output_stage.configure(&_gemm_output, biases, &_tmp_output, output_multiplier, output_shift, output_quant_info.offset);
}
// Configure Col2Im
_output_col2im_kernel.configure(_is_quantized ? &_tmp_output : &_gemm_output, output, Size2D(conv_w, conv_h));
if(_is_quantized)
{
_tmp_output.allocator()->allocate();
}
_gemm_output.allocator()->allocate();
ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
// Allocate intermediate tensor
if(!_are_weights_reshaped)
{
_weights_reshaped.allocator()->allocate();
}
}
Status NEConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
const WeightsInfo &weights_info)
{
DataType dt{};
bool append_bias{};
bool are_weights_reshaped{};
bool is_fully_connected_convolution{};
bool is_interleaved_transposed{};
bool is_quantized{};
unsigned int kernel_width = 0;
unsigned int kernel_height = 0;
unsigned int mat_weights_cols = 0;
unsigned int mat_weights_rows = 0;
unsigned int conv_w = 0;
unsigned int conv_h = 0;
Status status = validate_and_initialize_values(input, weights, biases, conv_info, weights_info, dt, append_bias, are_weights_reshaped, kernel_width, kernel_height,
is_fully_connected_convolution, is_interleaved_transposed, is_quantized, mat_weights_cols, mat_weights_rows,
conv_w, conv_h);
ARM_COMPUTE_RETURN_ON_ERROR(status);
std::unique_ptr<ITensorInfo> reshaped_weights = weights->clone();
bool optimised_kernel = false;
#if defined(__arm__)
if(NEScheduler::get().cpu_info().CPU == CPUTarget::ARMV7 && dt == DataType::F32)
{
optimised_kernel = true;
}
#elif defined(__aarch64__)
if(NEScheduler::get().cpu_info().CPU >= CPUTarget::ARMV8 && dt == DataType::F32)
{
optimised_kernel = true;
}
#endif /* defined(__arm__) || defined(__aarch64__) */
// Reshape weights if needed
if(optimised_kernel)
{
if(are_weights_reshaped)
{
mat_weights_cols = weights_info.num_kernels();
mat_weights_rows = weights->dimension(1);
}
else
{
TensorShape reshaped_weights_shape{ mat_weights_cols, mat_weights_rows };
// Create tensor to store the reshaped weights
reshaped_weights->set_tensor_shape(get_reshaped_weights_shape_conv(weights, append_bias, is_fully_connected_convolution));
ARM_COMPUTE_RETURN_ON_ERROR(NEConvolutionLayerReshapeWeights::validate(weights, biases, reshaped_weights.get(), !is_fully_connected_convolution /* 1xW transpose */));
weights = reshaped_weights.get();
}
}
else
{
if(are_weights_reshaped)
{
const unsigned int transpose_width = 16 / input->element_size();
mat_weights_cols = weights_info.num_kernels();
mat_weights_rows = weights->dimension(0) / transpose_width + (append_bias ? 1 : 0);
}
else
{
TensorShape reshaped_weights_shape;
if(is_fully_connected_convolution || is_quantized)
{
reshaped_weights_shape = TensorShape{ mat_weights_cols, mat_weights_rows };
}
else
{
// Create tensor to store transposed weights
const float transpose_width = 16.0f / input->element_size();
reshaped_weights_shape = TensorShape{ mat_weights_rows *static_cast<unsigned int>(transpose_width),
static_cast<unsigned int>(std::ceil(mat_weights_cols / transpose_width)) };
}
// Create tensor to store the reshaped weights
reshaped_weights->set_tensor_shape(get_reshaped_weights_shape_conv(weights, append_bias, is_fully_connected_convolution));
ARM_COMPUTE_RETURN_ON_ERROR(NEConvolutionLayerReshapeWeights::validate(weights, biases, reshaped_weights.get(), !is_fully_connected_convolution /* 1xW transpose */));
weights = reshaped_weights.get();
}
}
// Validate im2col
const unsigned int mat_input_cols = mat_weights_rows;
const unsigned int mat_input_rows = conv_w * conv_h;
TensorShape shape_im2col = input->tensor_shape();
shape_im2col.set(0, mat_input_cols);
shape_im2col.set(1, mat_input_rows);
shape_im2col.set(2, 1);
TensorInfo im2_col_info = input->clone()->set_tensor_shape(shape_im2col);
ARM_COMPUTE_RETURN_ON_ERROR(NEIm2ColKernel::validate(input, &im2_col_info, Size2D(weights->dimension(0), weights->dimension(1)), conv_info, append_bias));
// Create GEMM output tensor
TensorShape shape_gemm(im2_col_info.tensor_shape());
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, mat_input_rows);
TensorInfo gemm_output_info = input->clone()->set_tensor_shape(shape_gemm);
// Validate GEMM interleave and multiply
if(is_interleaved_transposed)
{
TensorShape shape_interleaved = shape_im2col;
shape_interleaved.set(0, shape_interleaved.x() * 4);
shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f));
TensorInfo input_interleaved_info = input->clone()->set_tensor_shape(shape_interleaved);
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMInterleave4x4Kernel::validate(&im2_col_info, &input_interleaved_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixMultiplyKernel::validate(&input_interleaved_info, weights, &gemm_output_info));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixMultiplyKernel::validate(&im2_col_info, weights, &gemm_output_info));
}
ARM_COMPUTE_RETURN_ON_ERROR(NECol2ImKernel::validate(&gemm_output_info, output, Size2D(conv_w, conv_h)));
ARM_COMPUTE_RETURN_ERROR_ON_MSG((output->dimension(0) != conv_w) || (output->dimension(1) != conv_h), "Output shape does not match the expected one");
return Status{};
}
void NEConvolutionLayer::run()
{
// Run weights reshaping (Runs once for every configure)
if(!_are_weights_reshaped)
{
_are_weights_reshaped = true;
_reshape_weights.run();
}
_memory_group.acquire();
// Run input reshaping
NEScheduler::get().schedule(&_input_im2col_kernel, Window::DimY);
// Runs matrix multiply on reshaped matrices
if(_mm_optimised_kernel != nullptr)
{
NEScheduler::get().schedule(_mm_optimised_kernel.get(), Window::DimY);
}
else
{
if(_is_interleaved_transposed)
{
// Run interleave
NEScheduler::get().schedule(&_input_interleave_kernel, Window::DimY);
}
// Runs matrix multiply on reshaped matrices
if(_is_quantized)
{
_mm_gemmlowp.run();
}
else
{
NEScheduler::get().schedule(&_mm_kernel, Window::DimY);
}
}
// Run output stage for quantized case
if(_is_quantized)
{
_gemmlowp_output_stage.run();
}
// Reshape output matrix
NEScheduler::get().schedule(&_output_col2im_kernel, Window::DimY);
_memory_group.release();
}
} // namespace arm_compute