blob: 1797c2ceb190f07504699f0ec2dde62b30fb6483 [file] [log] [blame]
/*
* Copyright (c) 2018-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/tuners/BifrostTuner.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernels.h"
#include "arm_compute/core/utils/misc/Cast.h"
namespace arm_compute
{
namespace tuners
{
namespace
{
/** Tunes a @ref CLDirectConvolutionLayerKernel for a bifrost target
*
* @param[in] k Kernels to tune
*/
void tune_direct_convolution_kernel(CLDirectConvolutionLayerKernel &k)
{
cl::NDRange lws_hint = k.lws_hint();
const GPUTarget gpu_target = k.get_target();
const DataType dt = k._input->info()->data_type();
const TensorShape weights_shape = k._weights->info()->tensor_shape();
const TensorShape inputs_shape = k._input->info()->tensor_shape();
const size_t kernel_size = weights_shape.x();
const unsigned int stride_x = k._conv_stride_x;
const unsigned int stride_y = k._conv_stride_y;
if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72) && (kernel_size <= 5) && (stride_x == 1) && (stride_y == 1) && (dt == DataType::F32))
{
// Through extensive experimentation with over 30 representative tensor
// shapes, we found a small number of local work size configurations
// that result in nearly optimal execution times. Selecting the right
// lws for a given shape, however, required a complex decision tree,
// until we constructed a simple feature as described below.
//
// We started from the number of multiply-accumulate operations for a
// convolution layer, which is equal to the product of the input
// dimensions 0..2 and the weights dimensions 0..2. Unfortunately,
// this resulted in ties between distinct shapes that required distinct
// lws configurations. Replacing the width of the input with the kernel
// size, however, resulted in nearly optimal predictions. We use underscores
// in variable names to indicate when they are intentionally misleading.
const size_t product_of_weights_dimensions = weights_shape[0] * weights_shape[1] * weights_shape[2];
const size_t product_of_input_dimensions_ = inputs_shape[0] * inputs_shape[1] * inputs_shape[2];
const float mega_ops_ = 1e-6 * product_of_weights_dimensions * product_of_input_dimensions_;
switch(kernel_size)
{
case 1:
{
if(mega_ops_ < 1.f)
{
lws_hint = cl::NDRange(1, 1, 8);
}
else if(mega_ops_ < 7.f)
{
lws_hint = cl::NDRange(1, 1, 4);
}
else
{
lws_hint = cl::NDRange(1, 1, 2);
}
break;
}
case 3:
{
if(mega_ops_ < 1.f)
{
lws_hint = cl::NDRange(1, 1, 8);
}
else if(mega_ops_ < 13.f)
{
lws_hint = cl::NDRange(2, 1, 4);
}
else if(mega_ops_ < 50.f)
{
lws_hint = cl::NDRange(3, 1, 4);
}
else
{
lws_hint = cl::NDRange(2, 1, 6);
}
break;
}
case 5:
{
if(mega_ops_ < 2.f || mega_ops_ > 80.f)
{
lws_hint = cl::NDRange(2, 1, 4);
}
else
{
lws_hint = cl::NDRange(2, 1, 8);
}
break;
}
default:
break;
}
k.set_lws_hint(lws_hint);
}
}
void tune_col2im_kernel(CLCol2ImKernel &k)
{
cl::NDRange lws_hint = k.lws_hint();
const GPUTarget gpu_target = k.get_target();
// Configure the local work size for Bifrost with a value obtained
// via exhaustive autotuning over 30 representative tensor shapes.
if(gpu_target_is_in(gpu_target,
GPUTarget::G71, GPUTarget::G72, GPUTarget::G76,
GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT,
GPUTarget::G52, GPUTarget::G52LIT))
{
if((k._convolved_dims.width == 7) || (k._convolved_dims.width == 14))
{
lws_hint = cl::NDRange(1, 7, 1);
}
else
{
lws_hint = cl::NDRange(1, 8, 1);
}
}
k.set_lws_hint(lws_hint);
}
void tune_im2col_kernel(CLIm2ColKernel &k)
{
cl::NDRange lws_hint = k.lws_hint();
const GPUTarget gpu_target = k.get_target();
// Local work size optimized for the 11x11 AlexNet convolution on Bifrost.
if(gpu_target_is_in(gpu_target,
GPUTarget::G71, GPUTarget::G72, GPUTarget::G76,
GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT,
GPUTarget::G52, GPUTarget::G52LIT)
&& k._kernel_dims.width == 11)
{
const bool is_square_kernel = (k._kernel_dims.width == k._kernel_dims.height);
if(!is_square_kernel && k._kernel_dims.width > 1 && !k._conv_info.has_padding())
{
lws_hint = cl::NDRange(1, 1, 1);
}
}
k.set_lws_hint(lws_hint);
}
void tune_gemv_kernel(CLGEMMMatrixVectorMultiplyKernel &k)
{
cl::NDRange lws_hint = k.lws_hint();
const GPUTarget gpu_target = k.get_target();
// Configure the local work size for Bifrost with a value obtained
// via exhaustive autotuning for the MobileNets tensor shapes.
if(gpu_target_is_in(gpu_target,
GPUTarget::G71, GPUTarget::G72, GPUTarget::G76,
GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT,
GPUTarget::G52, GPUTarget::G52LIT))
{
lws_hint = cl::NDRange(1, 1, 1);
}
k.set_lws_hint(lws_hint);
}
void tune_gemm_kernel(CLGEMMMatrixMultiplyKernel &k)
{
cl::NDRange lws_hint = k.lws_hint();
const GPUTarget gpu_target = k.get_target();
// Configure LWS hint
switch(gpu_target)
{
case GPUTarget::G71:
case GPUTarget::G72:
case GPUTarget::G51:
case GPUTarget::G51BIG:
case GPUTarget::G51LIT:
case GPUTarget::G52:
case GPUTarget::G52LIT:
case GPUTarget::G76:
if(k._input1->info()->dimension(1) == 24)
{
// LWS optimized for the 11x11 AlexNet convolution on Bifrost.
lws_hint = cl::NDRange(2, 2);
}
else if(k._output->info()->dimension(1) == 196)
{
lws_hint = cl::NDRange(1, 7);
}
else
{
lws_hint = cl::NDRange(8, 8);
}
break;
default:
lws_hint = cl::NullRange;
}
k.set_lws_hint(lws_hint);
}
void tune_pooling_kernel(CLPoolingLayerKernel &k)
{
cl::NDRange lws_hint = k.lws_hint();
const GPUTarget gpu_target = k.get_target();
// Configure the local work size (hint) from the first two dimensions of the global work size.
// On Bifrost, this works for up to 35x35xC filters, for which the pooling_layer_3_optimized
// kernel is launched with gws=(9, 33, C). In any case, the hint will be ignored if it is
// invalid (e.g. exceeds the maximum workgroup size that the kernel can be launched with).
if(k._input->info()->data_layout() == DataLayout::NCHW)
{
if(gpu_target_is_in(gpu_target,
GPUTarget::G71, GPUTarget::G72, GPUTarget::G76,
GPUTarget::G51, GPUTarget::G51BIG, GPUTarget::G51LIT,
GPUTarget::G52, GPUTarget::G52LIT))
{
cl::NDRange gws = ICLKernel::gws_from_window(k.window());
lws_hint = cl::NDRange(gws[0], gws[1], 1);
}
}
k.set_lws_hint(lws_hint);
}
void tune_scale_kernel(CLScaleKernel &k)
{
cl::NDRange lws_hint = k.lws_hint();
const GPUTarget gpu_target = k.get_target();
const DataType dt = k.input()->info()->data_type();
const InterpolationPolicy interpolation = k.get_interpolation_policy();
// Configure the local work size for Bifrost, interpolation (bilinear) and datatype F32.
// The value are obtained via exhaustive autotuning.
if(gpu_target_is_in(gpu_target, GPUTarget::G71, GPUTarget::G72) && (dt == DataType::F32) && (interpolation == InterpolationPolicy::BILINEAR))
{
auto dim_0 = k.output()->info()->dimension(0);
if(dim_0 == 480)
{
lws_hint = cl::NDRange(2, 1);
}
else if(dim_0 == 3120)
{
lws_hint = cl::NDRange(2, 8);
}
else if(dim_0 == 4160)
{
lws_hint = cl::NDRange(4, 8);
}
k.set_lws_hint(lws_hint);
}
}
} // namespace
void BifrostTuner::tune_kernel_static(ICLKernel &kernel)
{
if(dynamic_cast<CLDirectConvolutionLayerKernel *>(&kernel) != nullptr)
{
tune_direct_convolution_kernel(*utils::cast::polymorphic_downcast<CLDirectConvolutionLayerKernel *>(&kernel));
}
else if(dynamic_cast<CLCol2ImKernel *>(&kernel) != nullptr)
{
tune_col2im_kernel(*utils::cast::polymorphic_downcast<CLCol2ImKernel *>(&kernel));
}
else if(dynamic_cast<CLIm2ColKernel *>(&kernel) != nullptr)
{
tune_im2col_kernel(*utils::cast::polymorphic_downcast<CLIm2ColKernel *>(&kernel));
}
else if(dynamic_cast<CLGEMMMatrixVectorMultiplyKernel *>(&kernel) != nullptr)
{
tune_gemv_kernel(*utils::cast::polymorphic_downcast<CLGEMMMatrixVectorMultiplyKernel *>(&kernel));
}
else if(dynamic_cast<CLGEMMMatrixMultiplyKernel *>(&kernel) != nullptr)
{
tune_gemm_kernel(*utils::cast::polymorphic_downcast<CLGEMMMatrixMultiplyKernel *>(&kernel));
}
else if(dynamic_cast<CLPoolingLayerKernel *>(&kernel) != nullptr)
{
tune_pooling_kernel(*utils::cast::polymorphic_downcast<CLPoolingLayerKernel *>(&kernel));
}
else if(dynamic_cast<CLScaleKernel *>(&kernel) != nullptr)
{
tune_scale_kernel(*utils::cast::polymorphic_downcast<CLScaleKernel *>(&kernel));
}
}
void BifrostTuner::tune_kernel_dynamic(ICLKernel &kernel)
{
ARM_COMPUTE_UNUSED(kernel);
}
void BifrostTuner::tune_kernel_dynamic(ICLKernel &kernel, const InputTensorMap &inputs, const OutputTensorMap &outputs)
{
ARM_COMPUTE_UNUSED(kernel, inputs, outputs);
}
} // namespace tuners
} // namespace arm_compute