blob: 776cb27d7aef4db717efa656c80367d90d02251e [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NENormalizationLayerKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/NEMath.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo &norm_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_squared, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, input_squared);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, input_squared);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(norm_info.norm_size() % 2), "Normalization size should be odd");
if(is_data_type_fixed_point(input->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, input_squared);
ARM_COMPUTE_RETURN_ERROR_ON_VALUE_NOT_REPRESENTABLE_IN_FIXED_POINT(norm_info.beta(), input);
ARM_COMPUTE_RETURN_ERROR_ON_VALUE_NOT_REPRESENTABLE_IN_FIXED_POINT(norm_info.kappa(), input);
ARM_COMPUTE_RETURN_ERROR_ON_VALUE_NOT_REPRESENTABLE_IN_FIXED_POINT(norm_info.scale_coeff(), input);
}
// Checks performed when output is configured
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *input_squared, ITensorInfo *output, const NormalizationLayerInfo &norm_info)
{
unsigned int num_elems_processed_per_iteration = 16 / input->element_size();
const unsigned int num_elems_read_per_iteration = num_elems_processed_per_iteration + 2 * (norm_info.norm_size() / 2);
const unsigned int num_rows = (norm_info.type() == NormType::IN_MAP_2D) ? norm_info.norm_size() : 1;
const unsigned int border_width = (norm_info.is_cross_map()) ? 0 : std::min<unsigned int>(norm_info.norm_size() / 2, 3U);
BorderSize border_size = BorderSize(0, border_width);
bool window_changed = false;
// Configure window
Window win = calculate_max_window(*input, Steps(num_elems_processed_per_iteration));
AccessWindowRectangle input_access(input, -border_size.left, 0, num_elems_read_per_iteration, num_rows);
AccessWindowRectangle input_squared_access(input_squared, -border_size.left, 0, num_elems_read_per_iteration, num_rows);
if(output->total_size() != 0)
{
AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
window_changed = update_window_and_padding(win, input_access, input_squared_access, output_access);
output_access.set_valid_region(win, input->valid_region());
}
else
{
window_changed = update_window_and_padding(win, input_access, input_squared_access);
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
} // namespace
NENormalizationLayerKernel::NENormalizationLayerKernel()
: _func(nullptr), _input(nullptr), _input_squared(nullptr), _output(nullptr), _norm_info(NormType::IN_MAP_1D), _border_size()
{
}
BorderSize NENormalizationLayerKernel::border_size() const
{
return _border_size;
}
void NENormalizationLayerKernel::configure(const ITensor *input, const ITensor *input_squared, ITensor *output, NormalizationLayerInfo norm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_squared, output);
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output->info(), *input->info());
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), input_squared->info(), output->info(), norm_info));
const unsigned int border_width = (norm_info.is_cross_map()) ? 0 : std::min<unsigned int>(norm_info.norm_size() / 2, 3U);
_input = input;
_input_squared = input_squared;
_output = output;
_norm_info = norm_info;
_border_size = BorderSize(0, border_width);
switch(_input->info()->data_type())
{
case DataType::F32:
{
switch(norm_info.type())
{
case NormType::IN_MAP_1D:
_func = &NENormalizationLayerKernel::normalize_float<DataType::F32, 0, false>;
break;
case NormType::IN_MAP_2D:
// Normalize over X and Y
_func = &NENormalizationLayerKernel::normalize_float<DataType::F32, 0, true>;
break;
case NormType::CROSS_MAP:
_func = &NENormalizationLayerKernel::normalize_float<DataType::F32, 2, false>;
break;
default:
break;
}
break;
}
case DataType::F16:
{
switch(norm_info.type())
{
case NormType::IN_MAP_1D:
_func = &NENormalizationLayerKernel::normalize_float<DataType::F16, 0, false>;
break;
case NormType::IN_MAP_2D:
// Normalize over X and Y
_func = &NENormalizationLayerKernel::normalize_float<DataType::F16, 0, true>;
break;
case NormType::CROSS_MAP:
_func = &NENormalizationLayerKernel::normalize_float<DataType::F16, 2, false>;
break;
default:
break;
}
break;
}
case DataType::QS8:
{
switch(norm_info.type())
{
case NormType::IN_MAP_1D:
_func = &NENormalizationLayerKernel::normalize_fixed_point<DataType::QS8, 0, false>;
break;
case NormType::IN_MAP_2D:
// Normalize over X and Y
_func = &NENormalizationLayerKernel::normalize_fixed_point<DataType::QS8, 0, true>;
break;
case NormType::CROSS_MAP:
_func = &NENormalizationLayerKernel::normalize_fixed_point<DataType::QS8, 2, false>;
break;
default:
break;
}
break;
}
case DataType::QS16:
{
switch(norm_info.type())
{
case NormType::IN_MAP_1D:
_func = &NENormalizationLayerKernel::normalize_fixed_point<DataType::QS16, 0, false>;
break;
case NormType::IN_MAP_2D:
// Normalize over X and Y
_func = &NENormalizationLayerKernel::normalize_fixed_point<DataType::QS16, 0, true>;
break;
case NormType::CROSS_MAP:
_func = &NENormalizationLayerKernel::normalize_fixed_point<DataType::QS16, 2, false>;
break;
default:
break;
}
break;
}
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), input_squared->info(), output->info(), norm_info);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
}
template <DataType dt, unsigned int dim, bool do_2D_norm>
void NENormalizationLayerKernel::normalize_float(const Window &window)
{
Iterator input(_input, window);
Iterator input_squared(_input_squared, window);
Iterator output(_output, window);
const int dim_y = 1;
const int radius = _norm_info.norm_size() / 2;
const int total_size = _input->info()->dimension(dim) - 1;
const int input_squared_stride = _input_squared->info()->strides_in_bytes()[dim];
// We account padding across X only and we iterate over rows
const int min_left = (dim == 2) ? 0 : -static_cast<int>(border_size().left);
const int max_right = (dim == 2) ? total_size : total_size + border_size().left;
const int min_top = 0;
const int max_bottom = _input->info()->dimension(dim_y) - 1;
if(dt == DataType::F32)
{
const float32x4_t coeff_vec = vdupq_n_f32(_norm_info.scale_coeff());
const float32x4_t beta_vec = vdupq_n_f32(_norm_info.beta());
const float32x4_t kappa_vec = vdupq_n_f32(_norm_info.kappa());
execute_window_loop(window, [&](const Coordinates & id)
{
// Get range to normalize
const int current_row = do_2D_norm ? id[dim_y] : 0;
const int current_slice = id[dim];
const int first_row = do_2D_norm ? std::max(current_row - radius, min_top) : 0;
const int last_row = do_2D_norm ? std::min(current_row + radius, max_bottom) : 0;
const int first_slice = std::max(current_slice - radius, min_left);
const int last_slice = std::min(current_slice + radius, max_right);
// Accumulate 2D In-Map values
float32x4_t accu = vdupq_n_f32(0.f);
for(int j = first_row; j <= last_row; j++)
{
// Compute row displacement
const int row = (j - current_row) * _input_squared->info()->strides_in_bytes()[dim_y];
const uint8_t *const input_squared_ptr = input_squared.ptr() + row - (current_slice * input_squared_stride);
for(int i = first_slice; i <= last_slice; ++i)
{
accu = vaddq_f32(accu, vld1q_f32(reinterpret_cast<const float *>(input_squared_ptr + i * input_squared_stride)));
}
}
// Normalize
const float32x4_t normalized = vpowq_f32(vmlaq_f32(kappa_vec, coeff_vec, accu), beta_vec);
const float32x4_t normalized_pixel = vmulq_f32(vld1q_f32(reinterpret_cast<const float *>(input.ptr())), vinvq_f32(normalized));
vst1q_f32(reinterpret_cast<float *>(output.ptr()), normalized_pixel);
},
input, input_squared, output);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
else if(dt == DataType::F16)
{
const float16x8_t coeff_vec = vdupq_n_f16(_norm_info.scale_coeff());
const float16x8_t beta_vec_f16 = vdupq_n_f16(_norm_info.beta());
const float16x8_t kappa_vec = vdupq_n_f16(_norm_info.kappa());
execute_window_loop(window, [&](const Coordinates & id)
{
// Get range to normalize
const int current_row = do_2D_norm ? id[dim_y] : 0;
const int current_slice = id[dim];
const int first_row = do_2D_norm ? std::max(current_row - radius, min_top) : 0;
const int last_row = do_2D_norm ? std::min(current_row + radius, max_bottom) : 0;
const int first_slice = std::max(current_slice - radius, min_left);
const int last_slice = std::min(current_slice + radius, max_right);
// Accumulate 2D In-Map values
float16x8_t accu = vdupq_n_f16(0.f);
for(int j = first_row; j <= last_row; j++)
{
// Compute row displacement
const int row = (j - current_row) * _input_squared->info()->strides_in_bytes()[dim_y];
const uint8_t *const input_squared_ptr = input_squared.ptr() + row - (current_slice * input_squared_stride);
for(int i = first_slice; i <= last_slice; ++i)
{
accu = vaddq_f16(accu, vld1q_f16(reinterpret_cast<const float16_t *>(input_squared_ptr + i * input_squared_stride)));
}
}
const float16x8_t norm_f16 = vpowq_f16(vaddq_f16(kappa_vec, vmulq_f16(coeff_vec, accu)), beta_vec_f16);
const float16x8_t normalized_pixel = vmulq_f16(vld1q_f16(reinterpret_cast<const float16_t *>(input.ptr())), vinvq_f16(norm_f16));
vst1q_f16(reinterpret_cast<float16_t *>(output.ptr()), normalized_pixel);
},
input, input_squared, output);
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
else
{
ARM_COMPUTE_ERROR("Not supported");
}
}
template <DataType dt, unsigned int dim, bool do_2D_norm>
void NENormalizationLayerKernel::normalize_fixed_point(const Window &window)
{
Iterator input(_input, window);
Iterator input_squared(_input_squared, window);
Iterator output(_output, window);
const int dim_y = 1;
const int radius = _norm_info.norm_size() / 2;
const int total_size = _input->info()->dimension(dim) - 1;
const int input_squared_stride = _input_squared->info()->strides_in_bytes()[dim];
// We account padding across X only and we iterate over rows
const int min_left = (dim == 2) ? 0 : -static_cast<int>(border_size().left);
const int max_right = (dim == 2) ? total_size : total_size + border_size().left;
const int min_top = 0;
const int max_bottom = _input->info()->dimension(dim_y) - 1;
const int fixed_point_position = _input->info()->fixed_point_position();
if(dt == DataType::QS8)
{
const qint8x16_t coeff_vec = vdupq_n_qs8_f32(_norm_info.scale_coeff(), fixed_point_position);
const qint8x16_t beta_vec = vdupq_n_qs8_f32(_norm_info.beta(), fixed_point_position);
const qint8x16_t kappa_vec = vdupq_n_qs8_f32(_norm_info.kappa(), fixed_point_position);
execute_window_loop(window, [&](const Coordinates & id)
{
// Get range to normalize
const int current_row = do_2D_norm ? id[dim_y] : 0;
const int current_slice = id[dim];
const int first_row = do_2D_norm ? std::max(current_row - radius, min_top) : 0;
const int last_row = do_2D_norm ? std::min(current_row + radius, max_bottom) : 0;
const int first_slice = std::max(current_slice - radius, min_left);
const int last_slice = std::min(current_slice + radius, max_right);
// Accumulate 2D In-Map values
qint8x16_t accu = vdupq_n_qs8(0);
for(int j = first_row; j <= last_row; ++j)
{
// Compute row displacement
const int row = (j - current_row) * _input_squared->info()->strides_in_bytes()[dim_y];
const uint8_t *const input_squared_ptr = input_squared.ptr() + row - (current_slice * input_squared_stride);
for(int i = first_slice; i <= last_slice; ++i)
{
accu = vqaddq_qs8(accu, vld1q_qs8(reinterpret_cast<const qint8_t *>(input_squared_ptr + i * input_squared_stride)));
}
}
// Normalize
const qint8x16_t accu_scale = vqmlaq_qs8(kappa_vec, coeff_vec, accu, fixed_point_position);
const qint8x16_t normalized = vqpowq_qs8(accu_scale, beta_vec, fixed_point_position);
const qint8x16_t normalized_pixel = vdivq_qs8(vld1q_qs8(reinterpret_cast<const qint8_t *>(input.ptr())), normalized, fixed_point_position);
vst1q_qs8(reinterpret_cast<qint8_t *>(output.ptr()), normalized_pixel);
},
input, input_squared, output);
}
else if(dt == DataType::QS16)
{
const qint16x8_t coeff_vec = vdupq_n_qs16_f32(_norm_info.scale_coeff(), fixed_point_position);
const qint16x8_t beta_vec = vdupq_n_qs16_f32(_norm_info.beta(), fixed_point_position);
const qint16x8_t kappa_vec = vdupq_n_qs16_f32(_norm_info.kappa(), fixed_point_position);
execute_window_loop(window, [&](const Coordinates & id)
{
// Get range to normalize
const int current_row = do_2D_norm ? id[dim_y] : 0;
const int current_slice = id[dim];
const int first_row = do_2D_norm ? std::max(current_row - radius, min_top) : 0;
const int last_row = do_2D_norm ? std::min(current_row + radius, max_bottom) : 0;
const int first_slice = std::max(current_slice - radius, min_left);
const int last_slice = std::min(current_slice + radius, max_right);
// Accumulate 2D In-Map values
qint16x8_t accu = vdupq_n_qs16(0);
for(int j = first_row; j <= last_row; ++j)
{
// Compute row displacement
const int row = (j - current_row) * _input_squared->info()->strides_in_bytes()[dim_y];
const uint8_t *const input_squared_ptr = input_squared.ptr() + row - (current_slice * input_squared_stride);
for(int i = first_slice; i <= last_slice; ++i)
{
accu = vqaddq_qs16(accu, vld1q_qs16(reinterpret_cast<const qint16_t *>(input_squared_ptr + i * input_squared_stride)));
}
}
// Normalize
const qint16x8_t accu_scale = vqmlaq_qs16(kappa_vec, coeff_vec, accu, fixed_point_position);
const qint16x8_t normalized = vqpowq_qs16(accu_scale, beta_vec, fixed_point_position);
const qint16x8_t normalized_pixel = vdivq_qs16(vld1q_qs16(reinterpret_cast<const qint16_t *>(input.ptr())), normalized, fixed_point_position);
vst1q_qs16(reinterpret_cast<qint16_t *>(output.ptr()), normalized_pixel);
},
input, input_squared, output);
}
else
{
ARM_COMPUTE_ERROR("Not supported");
}
}
Status NENormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo norm_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, input_squared, output, norm_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(), input_squared->clone().get(), output->clone().get(), norm_info).first);
return Status{};
}
void NENormalizationLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
// Run function
(this->*_func)(window);
}