blob: 381ae92182795ec6d38a13a38bb02422b7a94f89 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "transforms/input.hpp"
#include "winograd_gemm.hpp"
#include "arm.hpp"
namespace winograd
{
using Transform = WinogradGEMM<2, 2, 3, 3>::InputTransform<float>;
/******************************************************************************
* Cost methods for the input transform.
* =====================================
*/
template <>
template <>
int Transform::ops_performed(const Tensor4DShape &input_shape)
{
// NOTE: Cost in FLOPs rather than instructions or uops.
const int tile_M = iceildiv(input_shape.n_rows, inner_tile_rows);
const int tile_N = iceildiv(input_shape.n_cols, inner_tile_cols);
return 16 * 16 * tile_M * tile_N * input_shape.n_channels;
}
/*****************************************************************************/
/*****************************************************************************
* F(2x2, 3x3) implies the use of a 4x4 input tile. Such tiles can require a
* variety of padding types. For example, tiles at the top and left of an image
* can require one row or column of padding on their top and left sides if the
* padding type is SAME (where X represents a padded value):
*
* _______ _______
* |X X X X| |X X X X|
* |X | | | . . .
* |X | | |
* |X______| |_______|
* _______
* |X | .
* |X | . . . .
* |X | .
* |X______|
*
* For tiles near the right or bottom of the image it is more complicated. Such
* tiles might require padding by 0 or 1 rows or columns if the padding type is
* VALID or 1 or 2 rows or columns if the padding type is SAME:
*
* _______ _______ _______ _______
* |X X X X| |X X X X| |X X X X| |X X X X|
* |X | | | | X| | X X|
* |X | | | | X| | X X|
* |X______| |_______| |______X| |____X_X|
* _______ _______ _______ _______
* |X | | | | X| | X X|
* |X | | | | X| | X X|
* |X | | | | X| | X X|
* |X______| |_______| |______X| |____X_X|
* _______ _______ _______ _______
* |X | | | | X| | X X|
* |X | | | | X| | X X|
* |X | | | | X| | X X|
* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
* _______ _______ _______ _______
* |X | | | | X| | X X|
* |X | | | | X| | X X|
* |X X X X| |X X X X| |X X X X| |X X X X|
* |X_X_X_X| |X_X_X_X| |X_X_X_X| |X_X_X_X|
*
* Additional tiles are required for especially small input images.
*
* Build an array of the specialised methods that deal with each of the
* different padding combinations which may be required. These padding
* constraints are the space:
*
* Padding top in {0, 1}
* Padding left in {0, 1}
* Padding bottom in {0, 1, 2}
* Padding right in {0, 1, 2}
*/
template <>
template <>
template <int pad_top, int pad_left, int pad_bottom, int pad_right>
void Transform::process_tile(
int n_channels,
const float* const input_base,
const int input_row_stride,
const int input_col_stride,
float* const matrix_base,
const int matrix_stride
)
{
constexpr int inner_tile_i = 4, inner_tile_j = 4;
constexpr int cells_i = inner_tile_i - pad_bottom;
constexpr int cells_j = inner_tile_i - pad_right;
float *outptr = matrix_base;
// Get pointers into the input tile
const float *x_ptrs[inner_tile_i][inner_tile_j];
for (int i = pad_top, xi = 0; i < cells_i; i++, xi++)
{
// Get a pointer into the row
const float* const row_ptr = input_base + xi*input_row_stride;
for (int j = pad_left, xj = 0; j < cells_j; j++, xj++)
{
x_ptrs[i][j] = row_ptr + xj*input_col_stride;
}
}
// Matrices used/computed in this kernel.
float x[inner_tile_i][inner_tile_j];
float XTx[inner_tile_i][inner_tile_j];
float U[inner_tile_i][inner_tile_j];
for (int i = 0; i < inner_tile_i; i++)
{
for (int j = 0; j < inner_tile_j; j++)
{
x[i][j] = XTx[i][j] = 0.0f;
}
}
// Perform the Winograd input transformation for each channel in the input
// tensor.
int channels_remaining = n_channels;
#ifdef __aarch64__
for (; channels_remaining >= 4; channels_remaining -= 4)
{
// Matrices used/computed in this kernel.
float32x4_t x[inner_tile_i][inner_tile_j];
float32x4_t XTx[inner_tile_i][inner_tile_j];
float32x4_t U[inner_tile_i][inner_tile_j];
for (int i = 0; i < inner_tile_i; i++)
{
for (int j = 0; j < inner_tile_j; j++)
{
x[i][j] = vdupq_n_f32(0.0f);
XTx[i][j] = vdupq_n_f32(0.0f);
}
}
// Load x
for (int i = pad_top; i < cells_i; i++)
{
for (int j = pad_left; j < cells_j; j++)
{
x[i][j] = vld1q_f32(x_ptrs[i][j]);
x_ptrs[i][j] += 4;
}
}
// Compute XT . x
for (int j = pad_left; j < cells_j; j++)
{
// XTx[0][j] = x[0][j] - x[2][j];
XTx[0][j] = vsubq_f32(x[0][j], x[2][j]);
// XTx[1][j] = x[1][j] + x[2][j];
XTx[1][j] = vaddq_f32(x[1][j], x[2][j]);
// XTx[2][j] = x[2][j] - x[1][j];
XTx[2][j] = vsubq_f32(x[2][j], x[1][j]);
// XTx[3][j] = x[1][j] - x[3][j];
XTx[3][j] = vsubq_f32(x[1][j], x[3][j]);
}
// Compute U = XT . x . X
for (int i = 0; i < inner_tile_i; i++)
{
// U[i][0] = XTx[i][0] - XTx[i][2];
U[i][0] = vsubq_f32(XTx[i][0], XTx[i][2]);
// U[i][1] = XTx[i][1] + XTx[i][2];
U[i][1] = vaddq_f32(XTx[i][1], XTx[i][2]);
// U[i][2] = XTx[i][2] - XTx[i][1];
U[i][2] = vsubq_f32(XTx[i][2], XTx[i][1]);
// U[i][3] = XTx[i][1] - XTx[i][3];
U[i][3] = vsubq_f32(XTx[i][1], XTx[i][3]);
}
// Store the transformed matrix
for (int i = 0, m = 0; i < inner_tile_i; i++)
{
for (int j = 0; j < inner_tile_j; j++, m++)
{
vst1q_f32(outptr + m*matrix_stride, U[i][j]);
}
}
outptr += 4;
}
#endif // __aarch64__
#ifdef __arm_any__
for (; channels_remaining >= 2; channels_remaining -= 2)
{
// Matrices used/computed in this kernel.
float32x2_t x[inner_tile_i][inner_tile_j];
float32x2_t XTx[inner_tile_i][inner_tile_j];
float32x2_t U[inner_tile_i][inner_tile_j];
for (int i = 0; i < inner_tile_i; i++)
{
for (int j = 0; j < inner_tile_j; j++)
{
x[i][j] = vdup_n_f32(0.0f);
XTx[i][j] = vdup_n_f32(0.0f);
}
}
// Load x
for (int i = pad_top; i < cells_i; i++)
{
for (int j = pad_left; j < cells_j; j++)
{
x[i][j] = vld1_f32(x_ptrs[i][j]);
x_ptrs[i][j] += 2;
}
}
// Compute XT . x
for (int j = pad_left; j < cells_j; j++)
{
// XTx[0][j] = x[0][j] - x[2][j];
XTx[0][j] = vsub_f32(x[0][j], x[2][j]);
// XTx[1][j] = x[1][j] + x[2][j];
XTx[1][j] = vadd_f32(x[1][j], x[2][j]);
// XTx[2][j] = x[2][j] - x[1][j];
XTx[2][j] = vsub_f32(x[2][j], x[1][j]);
// XTx[3][j] = x[1][j] - x[3][j];
XTx[3][j] = vsub_f32(x[1][j], x[3][j]);
}
// Compute U = XT . x . X
for (int i = 0; i < inner_tile_i; i++)
{
// U[i][0] = XTx[i][0] - XTx[i][2];
U[i][0] = vsub_f32(XTx[i][0], XTx[i][2]);
// U[i][1] = XTx[i][1] + XTx[i][2];
U[i][1] = vadd_f32(XTx[i][1], XTx[i][2]);
// U[i][2] = XTx[i][2] - XTx[i][1];
U[i][2] = vsub_f32(XTx[i][2], XTx[i][1]);
// U[i][3] = XTx[i][1] - XTx[i][3];
U[i][3] = vsub_f32(XTx[i][1], XTx[i][3]);
}
// Store the transformed matrix
for (int i = 0, m = 0; i < inner_tile_i; i++)
{
for (int j = 0; j < inner_tile_j; j++, m++)
{
vst1_f32(outptr + m*matrix_stride, U[i][j]);
}
}
outptr += 2;
}
#endif // __arm_any__
for (; channels_remaining; channels_remaining--)
{
// Load x
for (int i = pad_top; i < cells_i; i++)
{
for (int j = pad_left; j < cells_j; j++)
{
x[i][j] = *(x_ptrs[i][j]++);
}
}
// Compute XT . x
for (int j = pad_left; j < cells_j; j++)
{
XTx[0][j] = x[0][j] - x[2][j];
XTx[1][j] = x[1][j] + x[2][j];
XTx[2][j] = x[2][j] - x[1][j];
XTx[3][j] = x[1][j] - x[3][j];
}
// Compute U = XT . x . X
for (int i = 0; i < inner_tile_i; i++)
{
U[i][0] = XTx[i][0] - XTx[i][2];
U[i][1] = XTx[i][1] + XTx[i][2];
U[i][2] = XTx[i][2] - XTx[i][1];
U[i][3] = XTx[i][1] - XTx[i][3];
}
// Store the transformed matrix
for (int i = 0, m = 0; i < inner_tile_i; i++)
{
for (int j = 0; j < inner_tile_j; j++, m++)
{
*(outptr + m*matrix_stride) = U[i][j];
}
}
outptr++;
}
}
template <>
template <>
const Transform::TileFn Transform::tile_fns[2][2][max_pad_bottom][max_pad_right] =
{
{
{
{
Transform::template process_tile<0, 0, 0, 0>, // No padding
Transform::template process_tile<0, 0, 0, 1>, // Right
Transform::template process_tile<0, 0, 0, 2>, // Right
},
{
Transform::template process_tile<0, 0, 1, 0>, // Bottom
Transform::template process_tile<0, 0, 1, 1>, // Bottom-right
Transform::template process_tile<0, 0, 1, 2>, // Bottom-right
},
{
Transform::template process_tile<0, 0, 2, 0>, // Bottom
Transform::template process_tile<0, 0, 2, 1>, // Bottom-right
Transform::template process_tile<0, 0, 2, 2>, // Bottom-right
}
},
{
{
Transform::template process_tile<0, 1, 0, 0>, // Left
Transform::template process_tile<0, 1, 0, 1>, // Left AND right
Transform::template process_tile<0, 1, 0, 2>, // Left AND right
},
{
Transform::template process_tile<0, 1, 1, 0>, // Left-bottom
Transform::template process_tile<0, 1, 1, 1>, // Left, bottom AND right
Transform::template process_tile<0, 1, 1, 2>, // Left, bottom AND right
},
{
Transform::template process_tile<0, 1, 2, 0>, // Left-bottom
Transform::template process_tile<0, 1, 2, 1>, // Left, bottom AND right
Transform::template process_tile<0, 1, 2, 2>, // Left, bottom AND right
}
},
},
{
{
{
Transform::template process_tile<1, 0, 0, 0>, // Top
Transform::template process_tile<1, 0, 0, 1>, // Top-right
Transform::template process_tile<1, 0, 0, 2>, // Top-right
},
{
Transform::template process_tile<1, 0, 1, 0>, // Top AND bottom
Transform::template process_tile<1, 0, 1, 1>, // Top, bottom AND right
Transform::template process_tile<1, 0, 1, 2>, // Top, bottom AND right
},
{
Transform::template process_tile<1, 0, 2, 0>, // Top AND bottom
Transform::template process_tile<1, 0, 2, 1>, // Top, bottom AND right
Transform::template process_tile<1, 0, 2, 2>, // Top, bottom AND right
}
},
{
{
Transform::template process_tile<1, 1, 0, 0>, // Top-left
Transform::template process_tile<1, 1, 0, 1>, // Top, left AND right
Transform::template process_tile<1, 1, 0, 2>, // Top, left AND right
},
{
Transform::template process_tile<1, 1, 1, 0>, // Top, left AND bottom
Transform::template process_tile<1, 1, 1, 1>, // All padded
Transform::template process_tile<1, 1, 1, 2>, // All padded
},
{
Transform::template process_tile<1, 1, 2, 0>, // Top, left AND bottom
Transform::template process_tile<1, 1, 2, 1>, // All padded
Transform::template process_tile<1, 1, 2, 2>, // All padded
}
}
}
};
template struct WinogradGEMM<2, 2, 3, 3>::InputTransform<float>;
} // namespace winograd