blob: b813bbb25c9610dd4a020d7c289b19b633838e6e [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "../winograd_gemm.hpp"
namespace winograd
{
/***************************************************************************/
/* Instance-less API */
template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
void InputTransformImpl<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::execute(
const T* const input, /** Input tensor data */
const int n_batches, /** Number of batches in input tensor. */
const int in_batch_stride, /** Stride between batches of the input. */
const int n_rows, /** Number of rows in input tensor. */
const int in_row_stride, /** Stride between rows of the input. */
const int n_cols, /** Number of columns in input tensor. */
const int in_col_stride, /** Stride between columns of the input. */
const int n_channels, /** Number of channels in input tensor. */
const PaddingType padding, /** Padding type. */
const int tile_M,
const int tile_N,
T* const output, /** Base of output matrices. */
const int matrix_stride, /** Stride between output matrices. */
const int matrix_batch_stride, /** Stride between batches within the matrix. */
const int matrix_row_stride /** Stride within matrices. */
)
{
// Compute the padding required on each edge of the image
const int pad_top = (padding == PADDING_SAME) ? (KernelRows - 1) / 2 : 0;
const int pad_left = (padding == PADDING_SAME) ? (KernelCols - 1) / 2 : 0;
// Compute striding values (assuming NHWC ordered data)
const int output_col_stride = matrix_row_stride;
const int output_row_stride = tile_N * output_col_stride;
// Loop over batches
for (int batch = 0; batch < n_batches; batch++)
{
// Pointer to the batch
const T* const input_base_batch = input + batch * in_batch_stride;
T* const outptr_base_batch = output + batch * matrix_batch_stride;
// Loop over rows of tiles
for (int tile_i = 0; tile_i < tile_M; tile_i++)
{
// Padding (top + bottom) for the row
const int row_top = tile_i*(InnerTileRows - overlap_rows) - pad_top;
const int row_bottom = row_top + InnerTileRows;
const int row_pad_top = std::max(0, pad_top - tile_i*(InnerTileRows - overlap_rows));
const int row_pad_bottom = (row_bottom <= n_rows) ? 0 : row_bottom - n_rows;
// Pointer to the row
const int row_offset = std::min(0, row_pad_top - pad_top);
const T* const input_base_row = (
input_base_batch + ((InnerTileRows - overlap_rows)*tile_i + row_offset)*in_row_stride
);
T* const outptr_base_row = outptr_base_batch + tile_i*output_row_stride;
// Process the row
process_tile_row(
tile_N, n_channels,
input_base_row, in_row_stride, in_col_stride,
outptr_base_row, matrix_stride, matrix_row_stride,
row_pad_top, pad_left, row_pad_bottom, n_cols
);
}
}
}
template <int KernelRows, int InnerTileRows, typename T>
void InputTransformImpl<KernelRows, 1, InnerTileRows, 1, T>::execute(
const T* const input, /** Input tensor data */
const int n_batches, /** Number of batches in input tensor. */
const int in_batch_stride, /** Stride between batches of the input. */
const int n_rows, /** Number of rows in input tensor. */
const int in_row_stride, /** Stride between rows of the input. */
const int n_cols, /** Number of columns in input tensor. */
const int in_col_stride, /** Stride between columns of the input. */
const int n_channels, /** Number of channels in input tensor. */
const PaddingType padding, /** Padding type. */
const int tile_M,
const int tile_N,
T* const output, /** Base of output matrices. */
const int matrix_stride, /** Stride between output matrices. */
const int matrix_batch_stride, /** Stride between batches within the matrix. */
const int matrix_row_stride /** Stride within matrices. */
)
{
// If an Nx1 kernel then transpose and redirect to the 1xN implementation
InputTransformImpl<1, KernelRows, 1, InnerTileRows, T>::execute(
input,
n_batches, in_batch_stride,
n_cols, in_col_stride,
n_rows, in_row_stride,
n_channels, padding,
tile_N, tile_M,
output, matrix_stride, matrix_batch_stride, matrix_row_stride
);
}
template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
void InputTransformImpl<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::process_tile_row(
const int tile_N,
int n_channels,
const T* const input_base,
const int input_row_stride,
const int input_col_stride,
T* const matrix_base,
const int matrix_stride,
const int matrix_row_stride,
const int pad_top,
const int row_pad_left,
const int pad_bottom,
const int n_cols
)
{
// Loop over columns of tiles
for (int tile_j = 0; tile_j < tile_N; tile_j++)
{
// Padding (left + right) for the tile
const int t_start = tile_j*(InnerTileCols - overlap_cols) - row_pad_left;
const int t_end = t_start + InnerTileCols;
const int t_pad_left = std::max(0, row_pad_left - tile_j*(InnerTileCols - overlap_cols));
const int t_pad_right = (t_end <= n_cols) ? 0 : t_end - n_cols;
// Get pointers into the inputs and outputs
const int col_offset = std::min(0, t_pad_left - row_pad_left);
const T* const input_base_col = (
input_base + ((InnerTileCols - overlap_cols)*tile_j + col_offset)*input_col_stride
);
T* const outptr = matrix_base + tile_j*matrix_row_stride;
// Apply the specific tile processing function
const typename Tiles::TileFn tilefn = Tiles::get_tile_specialization(
pad_top, t_pad_left, pad_bottom, t_pad_right
);
tilefn(
n_channels,
input_base_col, input_row_stride, input_col_stride,
outptr, matrix_stride,
pad_top, t_pad_left, pad_bottom, t_pad_right
);
}
}
/***************************************************************************/
template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
InputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::InputTransform(
const T* const input, /** Input tensor data */
const int n_batches, /** Number of batches in input tensor. */
const int n_rows, /** Number of rows in input tensor. */
const int n_cols, /** Number of columns in input tensor. */
const int n_channels, /** Number of channels in input tensor. */
const PaddingType padding, /** Padding type. */
T* const output, /** Base of output matrices. */
const int matrix_stride, /** Stride between output matrices. */
const int matrix_row_stride, /** Stride within matrices. */
const int in_batch_stride, /** Stride between input batches. */
const int in_row_stride, /** Stride between input rows. */
const int in_col_stride /** Stride between input columns. */
) : _inptr(input), _outptr(output),
_n_batches(n_batches), _n_rows(n_rows), _n_cols(n_cols), _n_channels(n_channels),
_matrix_stride(matrix_stride), _matrix_row_stride(matrix_row_stride),
_tiles_M(iceildiv((padding == PADDING_SAME) ? n_rows : n_rows - KernelRows + 1,
InnerTileRows - KernelRows + 1)),
_tiles_N(iceildiv((padding == PADDING_SAME) ? n_cols : n_cols - KernelCols + 1,
InnerTileCols - KernelCols + 1)),
_in_col_stride(in_col_stride ? in_col_stride : n_channels),
_in_row_stride(in_row_stride ? in_row_stride : n_cols * _in_col_stride),
_in_batch_stride(in_batch_stride ? in_batch_stride : n_rows * _in_row_stride),
_padding_type(padding)
{
}
template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
unsigned int InputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::get_window() const
{
// The final window includes the tail, all other windows will be a multiple
// of the window block in size.
return iceildiv(_n_channels, WINDOW_BLOCK);
}
template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
void InputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::run(
const unsigned int start, const unsigned int stop
)
{
if (start >= get_window())
{
return;
}
// Determine the window of work to perform
const unsigned int start_channel = start * WINDOW_BLOCK;
const unsigned int stop_channel = std::min<const unsigned int>(
stop * WINDOW_BLOCK, _n_channels
);
const unsigned int n_channels = stop_channel - start_channel;
// Perform the work
execute(
_inptr + start_channel,
_n_batches, _in_batch_stride,
_n_rows, _in_row_stride,
_n_cols, _in_col_stride,
n_channels,
_padding_type,
_tiles_M,
_tiles_N,
_outptr + start_channel,
_matrix_stride,
_matrix_row_stride * _tiles_M * _tiles_N,
_matrix_row_stride
);
}
template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
void InputTransform<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::execute(
const T* const input, /** Input tensor data */
const int n_batches, /** Number of batches in input tensor. */
const int in_batch_stride, /** Stride between batches of the input. */
const int n_rows, /** Number of rows in input tensor. */
const int in_row_stride, /** Stride between rows of the input. */
const int n_cols, /** Number of columns in input tensor. */
const int in_col_stride, /** Stride between columns of the input. */
const int n_channels, /** Number of channels in input tensor. */
const PaddingType padding, /** Padding type. */
const int tile_M,
const int tile_N,
T* const output, /** Base of output matrices. */
const int matrix_stride, /** Stride between output matrices. */
const int matrix_batch_stride, /** Stride between batches within the matrix. */
const int matrix_row_stride /** Stride within matrices. */
)
{
Transform::execute(
input, n_batches, in_batch_stride, n_rows, in_row_stride, n_cols,
in_col_stride, n_channels, padding, tile_M, tile_N, output,
matrix_stride, matrix_batch_stride, matrix_row_stride
);
}
template <int KernelRows, int KernelCols, int InnerTileRows, int InnerTileCols, typename T>
typename InputTransformImplTiles<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::TileFn
InputTransformImplTiles<KernelRows, KernelCols, InnerTileRows, InnerTileCols, T>::
get_tile_specialization(
const int pad_top,
const int pad_left,
const int pad_bottom,
const int pad_right
)
{
if (!(pad_top || pad_left || pad_bottom || pad_right))
{
// No padding, return unpadded specialisation
return tilefn_unpadded;
}
else if (pad_top && !(pad_left || pad_bottom || pad_right))
{
// Top padding only
const int index = (pad_top - min_pad_top) / (InnerTileRows - overlap_rows);
return tilefn_top_padded[index];
}
else if (!(pad_top) && pad_left && !(pad_bottom || pad_right))
{
// Left padding only
const int index = (pad_left - min_pad_left) / (InnerTileCols - overlap_cols);
return tilefn_left_padded[index];
}
else if (!(pad_top || pad_left) && pad_bottom && !(pad_right))
{
// Bottom padding only
return tilefn_bottom_padded[pad_bottom - 1];
}
else if (!(pad_top || pad_left || pad_bottom) && pad_right)
{
// Right padding only
return tilefn_right_padded[pad_right - 1];
}
else
{
// Combination of paddings, return an unspecialised method
return tilefn_generic;
}
}
template <int KernelCols, int InnerTileCols, typename T>
typename InputTransformImplTiles<1, KernelCols, 1, InnerTileCols, T>::TileFn
InputTransformImplTiles<1, KernelCols, 1, InnerTileCols, T>::
get_tile_specialization(
const int pad_top,
const int pad_left,
const int pad_bottom,
const int pad_right
)
{
(void) pad_top;
(void) pad_bottom;
if (!(pad_left || pad_right))
{
// No padding, return unpadded specialisation
return tilefn_unpadded;
}
else if (pad_left && !pad_right)
{
// Left padding only
const int index = (pad_left - min_pad_left) / (InnerTileCols - overlap_cols);
return tilefn_left_padded[index];
}
else if (!pad_left && pad_right)
{
// Right padding only
return tilefn_right_padded[pad_right - 1];
}
else
{
// Combination of paddings, return an unspecialised method
return tilefn_generic;
}
}
}