blob: 9f8dd69922f003f0f7faf770bbe86e47d340f86f [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph/GraphBuilder.h"
#include "arm_compute/graph/Graph.h"
#include "arm_compute/graph/Utils.h"
#include "arm_compute/graph/algorithms/TopologicalSort.h"
#include "arm_compute/graph/nodes/Nodes.h"
#include "support/ToolchainSupport.h"
#define CHECK_NODEIDX_PAIR(pair, g) \
ARM_COMPUTE_ERROR_ON(((pair).node_id >= (g).nodes().size()) || ((g).node((pair).node_id) == nullptr) || ((pair).index >= (g).node((pair).node_id)->num_outputs()));
namespace arm_compute
{
namespace graph
{
namespace
{
Status set_node_params(Graph &g, NodeID nid, NodeParams &params)
{
INode *node = g.node(nid);
ARM_COMPUTE_RETURN_ERROR_ON(!node);
node->set_common_node_parameters(params);
return Status{};
}
Status set_accessor_on_node(Graph &g, NodeID nid, bool is_output, size_t idx, ITensorAccessorUPtr accessor)
{
INode *node = g.node(nid);
ARM_COMPUTE_RETURN_ERROR_ON(!node);
Tensor *tensor = is_output ? node->output(idx) : node->input(idx);
ARM_COMPUTE_RETURN_ERROR_ON(!tensor);
tensor->set_accessor(std::move(accessor));
return Status{};
}
NodeID add_const_node_with_name(Graph &g, NodeParams params, const std::string &name, TensorDescriptor desc, ITensorAccessorUPtr accessor)
{
params.name = params.name.empty() ? "" : params.name + name;
auto nid = GraphBuilder::add_const_node(g, params, std::move(desc), std::move(accessor));
set_node_params(g, nid, params);
return nid;
}
template <typename NT, typename... Args>
NodeID create_simple_single_input_output_node(Graph &g, NodeParams &params, NodeIdxPair input, Args &&... args)
{
CHECK_NODEIDX_PAIR(input, g);
NodeID nid = g.add_node<NT>(std::forward<Args>(args)...);
g.add_connection(input.node_id, input.index, nid, 0);
set_node_params(g, nid, params);
return nid;
}
template <typename NT, typename... Args>
NodeID create_simple_multiple_input_single_output_node(Graph &g, NodeParams &params, std::vector<NodeIdxPair> inputs, Args &&... args)
{
ARM_COMPUTE_ERROR_ON(inputs.size() == 0);
NodeID nid = g.add_node<NT>(std::forward<Args>(args)...);
unsigned int i = 0;
for(const auto &input : inputs)
{
CHECK_NODEIDX_PAIR(input, g);
g.add_connection(input.node_id, input.index, nid, i++);
}
set_node_params(g, nid, params);
return nid;
}
} // namespace
NodeID GraphBuilder::add_const_node(Graph &g, NodeParams params, TensorDescriptor desc, ITensorAccessorUPtr accessor)
{
auto nid = g.add_node<ConstNode>(desc);
set_node_params(g, nid, params);
set_accessor_on_node(g, nid, true, 0, std::move(accessor));
return nid;
}
NodeID GraphBuilder::add_input_node(Graph &g, NodeParams params, TensorDescriptor desc, ITensorAccessorUPtr accessor)
{
auto nid = g.add_node<InputNode>(desc);
set_node_params(g, nid, params);
set_accessor_on_node(g, nid, true, 0, std::move(accessor));
return nid;
}
NodeID GraphBuilder::add_output_node(Graph &g, NodeParams params, NodeIdxPair input, ITensorAccessorUPtr accessor)
{
CHECK_NODEIDX_PAIR(input, g);
NodeID nid = g.add_node<OutputNode>();
g.add_connection(input.node_id, input.index, nid, 0);
set_node_params(g, nid, params);
set_accessor_on_node(g, nid, false, 0, std::move(accessor));
return nid;
}
NodeID GraphBuilder::add_activation_node(Graph &g, NodeParams params, NodeIdxPair input, ActivationLayerInfo act_info,
const QuantizationInfo out_quant_info)
{
return create_simple_single_input_output_node<ActivationLayerNode>(g, params, input, act_info, out_quant_info);
}
NodeID GraphBuilder::add_batch_normalization_node(Graph &g, NodeParams params, NodeIdxPair input, float epsilon,
ITensorAccessorUPtr mean_accessor, ITensorAccessorUPtr var_accessor,
ITensorAccessorUPtr beta_accessor, ITensorAccessorUPtr gamma_accessor)
{
CHECK_NODEIDX_PAIR(input, g);
bool has_beta = (beta_accessor != nullptr);
bool has_gamma = (gamma_accessor != nullptr);
// Get input tensor descriptor
const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
// Calculate Common Descriptor
TensorDescriptor common_desc = input_tensor_desc;
common_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
// Create mean and var nodes
auto mean_nid = add_const_node_with_name(g, params, "Mean", common_desc, std::move(mean_accessor));
auto var_nid = add_const_node_with_name(g, params, "Variance", common_desc, std::move(var_accessor));
// Create beta node
NodeID beta_nid = EmptyNodeID;
if(has_beta)
{
beta_nid = add_const_node_with_name(g, params, "Beta", common_desc, std::move(beta_accessor));
}
// Create gamma node
NodeID gamma_nid = EmptyNodeID;
if(has_gamma)
{
gamma_nid = add_const_node_with_name(g, params, "Gamma", common_desc, std::move(gamma_accessor));
}
// Create batch normalization node and add connections
NodeID batch_norm_nid = g.add_node<BatchNormalizationLayerNode>(epsilon);
g.add_connection(input.node_id, input.index, batch_norm_nid, 0);
g.add_connection(mean_nid, 0, batch_norm_nid, 1);
g.add_connection(var_nid, 0, batch_norm_nid, 2);
if(has_beta)
{
g.add_connection(beta_nid, 0, batch_norm_nid, 3);
}
if(has_gamma)
{
g.add_connection(gamma_nid, 0, batch_norm_nid, 4);
}
set_node_params(g, batch_norm_nid, params);
return batch_norm_nid;
}
NodeID GraphBuilder::add_bounding_box_transform_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair deltas, BoundingBoxTransformInfo info)
{
CHECK_NODEIDX_PAIR(input, g);
CHECK_NODEIDX_PAIR(deltas, g);
NodeID nid = g.add_node<BoundingBoxTransformLayerNode>(info);
g.add_connection(input.node_id, input.index, nid, 0);
g.add_connection(deltas.node_id, deltas.index, nid, 1);
set_node_params(g, nid, params);
return nid;
}
NodeID GraphBuilder::add_channel_shuffle_node(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_groups)
{
return create_simple_single_input_output_node<ChannelShuffleLayerNode>(g, params, input, num_groups);
}
NodeID GraphBuilder::add_convolution_node(Graph &g, NodeParams params, NodeIdxPair input,
Size2D kernel_spatial_extend, unsigned int depth, PadStrideInfo conv_info,
unsigned int num_groups, ConvolutionMethod method, FastMathHint fast_math_hint,
ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor,
const QuantizationInfo weights_quant_info,
const QuantizationInfo out_quant_info)
{
CHECK_NODEIDX_PAIR(input, g);
ARM_COMPUTE_ERROR_ON(depth == 0);
ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
bool has_bias = (bias_accessor != nullptr);
// Get input tensor descriptor
const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
const DataLayout input_data_layout = input_tensor_desc.layout;
// Create weights node
TensorDescriptor w_desc = input_tensor_desc;
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) / num_groups);
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::BATCHES), depth);
if(!weights_quant_info.empty())
{
w_desc.quant_info = weights_quant_info;
}
NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
// Create bias nodes
NodeID b_nid = EmptyNodeID;
if(has_bias)
{
TensorDescriptor b_desc = input_tensor_desc;
b_desc.shape = TensorShape(depth);
if(is_data_type_quantized_asymmetric(input_tensor_desc.data_type))
{
b_desc.data_type = DataType::S32;
}
b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
}
// Create convolution node and connect
NodeID conv_nid = g.add_node<ConvolutionLayerNode>(conv_info, num_groups, method, fast_math_hint, out_quant_info);
g.add_connection(input.node_id, input.index, conv_nid, 0);
g.add_connection(w_nid, 0, conv_nid, 1);
if(has_bias)
{
g.add_connection(b_nid, 0, conv_nid, 2);
}
set_node_params(g, conv_nid, params);
return conv_nid;
}
NodeID GraphBuilder::add_deconvolution_node(Graph &g, NodeParams params, NodeIdxPair input,
Size2D kernel_spatial_extend, unsigned int depth, PadStrideInfo deconv_info,
Size2D inner_border, ITensorAccessorUPtr weights_accessor,
ITensorAccessorUPtr bias_accessor)
{
CHECK_NODEIDX_PAIR(input, g);
ARM_COMPUTE_ERROR_ON(depth == 0);
ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
bool has_bias = (bias_accessor != nullptr);
// Get input tensor descriptor
const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
const DataLayout input_data_layout = input_tensor_desc.layout;
// Create weights node
TensorDescriptor w_desc = input_tensor_desc;
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::BATCHES), depth);
NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
// Create bias nodes
NodeID b_nid = EmptyNodeID;
if(has_bias)
{
TensorDescriptor b_desc = input_tensor_desc;
b_desc.shape = TensorShape(depth);
if(is_data_type_quantized_asymmetric(input_tensor_desc.data_type))
{
b_desc.data_type = DataType::S32;
}
b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
}
// Create convolution node and connect
NodeID deconv_nid = g.add_node<DeconvolutionLayerNode>(deconv_info, inner_border);
g.add_connection(input.node_id, input.index, deconv_nid, 0);
g.add_connection(w_nid, 0, deconv_nid, 1);
if(has_bias)
{
g.add_connection(b_nid, 0, deconv_nid, 2);
}
set_node_params(g, deconv_nid, params);
return deconv_nid;
}
NodeID GraphBuilder::add_concatenate_node(Graph &g, NodeParams params, const std::vector<NodeIdxPair> &inputs, descriptors::ConcatLayerDescriptor concat_descriptor)
{
return create_simple_multiple_input_single_output_node<ConcatenateLayerNode>(g, params, inputs, inputs.size(), concat_descriptor);
}
NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D kernel_spatial_extend,
PadStrideInfo conv_info, int depth_multiplier, DepthwiseConvolutionMethod method,
ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor, const QuantizationInfo quant_info, const QuantizationInfo out_quant_info)
{
CHECK_NODEIDX_PAIR(input, g);
ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
bool has_bias = (bias_accessor != nullptr);
// Get input tensor descriptor
const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
const DataLayout input_data_layout = input_tensor_desc.layout;
// Create weights node
TensorDescriptor w_desc = input_tensor_desc;
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier);
if(!quant_info.empty())
{
w_desc.quant_info = quant_info;
}
NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
// Create bias nodes
NodeID b_nid = EmptyNodeID;
if(has_bias)
{
TensorDescriptor b_desc = input_tensor_desc;
b_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier);
if(is_data_type_quantized_asymmetric(b_desc.data_type))
{
b_desc.data_type = DataType::S32;
}
b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
}
// Create convolution node and connect
NodeID conv_nid = g.add_node<DepthwiseConvolutionLayerNode>(conv_info, depth_multiplier, method, out_quant_info);
g.add_connection(input.node_id, input.index, conv_nid, 0);
g.add_connection(w_nid, 0, conv_nid, 1);
if(has_bias)
{
g.add_connection(b_nid, 0, conv_nid, 2);
}
set_node_params(g, conv_nid, params);
return conv_nid;
}
NodeID GraphBuilder::add_detection_output_node(Graph &g, NodeParams params, NodeIdxPair input_loc, NodeIdxPair input_conf, NodeIdxPair input_priorbox, const DetectionOutputLayerInfo &detect_info)
{
CHECK_NODEIDX_PAIR(input_loc, g);
CHECK_NODEIDX_PAIR(input_conf, g);
CHECK_NODEIDX_PAIR(input_priorbox, g);
// Create detection_output node and connect
NodeID detect_nid = g.add_node<DetectionOutputLayerNode>(detect_info);
g.add_connection(input_loc.node_id, input_loc.index, detect_nid, 0);
g.add_connection(input_conf.node_id, input_conf.index, detect_nid, 1);
g.add_connection(input_priorbox.node_id, input_priorbox.index, detect_nid, 2);
set_node_params(g, detect_nid, params);
return detect_nid;
}
NodeID GraphBuilder::add_dummy_node(Graph &g, NodeParams params, NodeIdxPair input, TensorShape shape)
{
return create_simple_single_input_output_node<DummyNode>(g, params, input, shape);
}
NodeID GraphBuilder::add_elementwise_node(Graph &g, NodeParams params, NodeIdxPair input0, NodeIdxPair input1, EltwiseOperation operation)
{
CHECK_NODEIDX_PAIR(input0, g);
CHECK_NODEIDX_PAIR(input1, g);
NodeID nid = g.add_node<EltwiseLayerNode>(operation);
g.add_connection(input0.node_id, input0.index, nid, 0);
g.add_connection(input1.node_id, input1.index, nid, 1);
set_node_params(g, nid, params);
return nid;
}
NodeID GraphBuilder::add_flatten_node(Graph &g, NodeParams params, NodeIdxPair input)
{
return create_simple_single_input_output_node<FlattenLayerNode>(g, params, input);
}
NodeID GraphBuilder::add_fully_connected_layer(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_outputs,
NodeID weights_nid, NodeID bias_nid,
const FullyConnectedLayerInfo fc_info, const QuantizationInfo out_quant_info)
{
CHECK_NODEIDX_PAIR(input, g);
ARM_COMPUTE_ERROR_ON(num_outputs == 0);
ARM_COMPUTE_ERROR_ON(weights_nid == EmptyNodeID);
const bool has_bias = (bias_nid != EmptyNodeID);
// Get input tensor descriptor
const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
// Create fully connected node and connect
NodeID fc_nid = g.add_node<FullyConnectedLayerNode>(num_outputs, out_quant_info, fc_info);
g.add_connection(input.node_id, input.index, fc_nid, 0);
g.add_connection(weights_nid, 0, fc_nid, 1);
if(has_bias)
{
g.add_connection(bias_nid, 0, fc_nid, 2);
}
set_node_params(g, fc_nid, params);
return fc_nid;
}
NodeID GraphBuilder::add_fully_connected_layer(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_outputs,
ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor,
const FullyConnectedLayerInfo fc_info,
const QuantizationInfo weights_quant_info, const QuantizationInfo out_quant_info)
{
CHECK_NODEIDX_PAIR(input, g);
ARM_COMPUTE_ERROR_ON(num_outputs == 0);
bool has_bias = (bias_accessor != nullptr);
// Get input tensor descriptor
const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
// Create weights node
TensorDescriptor w_desc = FullyConnectedLayerNode::compute_weights_descriptor(input_tensor_desc, num_outputs, fc_info, weights_quant_info);
NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
// Create bias nodes
NodeID b_nid = EmptyNodeID;
if(has_bias)
{
TensorDescriptor b_desc = input_tensor_desc;
b_desc.shape = TensorShape(num_outputs);
if(is_data_type_quantized_asymmetric(input_tensor_desc.data_type))
{
b_desc.data_type = DataType::S32;
}
b_nid = add_const_node_with_name(g, params, "Bias", b_desc, std::move(bias_accessor));
}
// Create fully connected node and connect
NodeID fc_nid = g.add_node<FullyConnectedLayerNode>(num_outputs, out_quant_info, fc_info);
g.add_connection(input.node_id, input.index, fc_nid, 0);
g.add_connection(w_nid, 0, fc_nid, 1);
if(has_bias)
{
g.add_connection(b_nid, 0, fc_nid, 2);
}
set_node_params(g, fc_nid, params);
return fc_nid;
}
NodeID GraphBuilder::add_generate_proposals_node(Graph &g, NodeParams params, NodeIdxPair scores, NodeIdxPair deltas, NodeIdxPair anchors, GenerateProposalsInfo info)
{
CHECK_NODEIDX_PAIR(scores, g);
CHECK_NODEIDX_PAIR(deltas, g);
CHECK_NODEIDX_PAIR(anchors, g);
NodeID nid = g.add_node<GenerateProposalsLayerNode>(info);
g.add_connection(scores.node_id, scores.index, nid, 0);
g.add_connection(deltas.node_id, deltas.index, nid, 1);
g.add_connection(anchors.node_id, anchors.index, nid, 2);
set_node_params(g, nid, params);
return nid;
}
NodeID GraphBuilder::add_normalization_node(Graph &g, NodeParams params, NodeIdxPair input, NormalizationLayerInfo norm_info)
{
return create_simple_single_input_output_node<NormalizationLayerNode>(g, params, input, norm_info);
}
NodeID GraphBuilder::add_normalize_planar_yuv_node(Graph &g, NodeParams params, NodeIdxPair input,
ITensorAccessorUPtr mean_accessor, ITensorAccessorUPtr std_accessor)
{
CHECK_NODEIDX_PAIR(input, g);
// Get input tensor descriptor
const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
// Calculate Common Descriptor
TensorDescriptor common_desc = input_tensor_desc;
common_desc.shape = TensorShape(get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
// Create mean and std nodes
auto mean_nid = add_const_node_with_name(g, params, "Mean", common_desc, std::move(mean_accessor));
auto std_nid = add_const_node_with_name(g, params, "Std", common_desc, std::move(std_accessor));
// Create normalize planar YUV node and add connections
NodeID norm_planar_yuv_nid = g.add_node<NormalizePlanarYUVLayerNode>();
g.add_connection(input.node_id, input.index, norm_planar_yuv_nid, 0);
g.add_connection(mean_nid, 0, norm_planar_yuv_nid, 1);
g.add_connection(std_nid, 0, norm_planar_yuv_nid, 2);
set_node_params(g, norm_planar_yuv_nid, params);
return norm_planar_yuv_nid;
}
NodeID GraphBuilder::add_pad_node(Graph &g, NodeParams params, NodeIdxPair input, PaddingList padding)
{
return create_simple_single_input_output_node<PadLayerNode>(g, params, input, padding);
}
NodeID GraphBuilder::add_permute_node(Graph &g, NodeParams params, NodeIdxPair input, PermutationVector perm, DataLayout layout)
{
return create_simple_single_input_output_node<PermuteLayerNode>(g, params, input, perm, layout);
}
NodeID GraphBuilder::add_pooling_node(Graph &g, NodeParams params, NodeIdxPair input, PoolingLayerInfo pool_info)
{
return create_simple_single_input_output_node<PoolingLayerNode>(g, params, input, pool_info);
}
NodeID GraphBuilder::add_priorbox_node(Graph &g, NodeParams params, NodeIdxPair input0, NodeIdxPair input1, const PriorBoxLayerInfo &prior_info)
{
CHECK_NODEIDX_PAIR(input0, g);
CHECK_NODEIDX_PAIR(input1, g);
// Create priorbox node and connect
NodeID prior_nid = g.add_node<PriorBoxLayerNode>(prior_info);
g.add_connection(input0.node_id, input0.index, prior_nid, 0);
g.add_connection(input1.node_id, input1.index, prior_nid, 1);
set_node_params(g, prior_nid, params);
return prior_nid;
}
NodeID GraphBuilder::add_reorg_node(Graph &g, NodeParams params, NodeIdxPair input, int stride)
{
return create_simple_single_input_output_node<ReorgLayerNode>(g, params, input, stride);
}
NodeID GraphBuilder::add_reshape_node(Graph &g, NodeParams params, NodeIdxPair input, TensorShape shape)
{
return create_simple_single_input_output_node<ReshapeLayerNode>(g, params, input, shape);
}
NodeID GraphBuilder::add_resize_node(Graph &g, NodeParams params, NodeIdxPair input, InterpolationPolicy policy,
float width_scale, float height_scale)
{
return create_simple_single_input_output_node<ResizeLayerNode>(g, params, input, policy, width_scale, height_scale);
}
NodeID GraphBuilder::add_roi_align_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair rois, ROIPoolingLayerInfo pool_info)
{
CHECK_NODEIDX_PAIR(input, g);
CHECK_NODEIDX_PAIR(rois, g);
NodeID nid = g.add_node<ROIAlignLayerNode>(pool_info);
g.add_connection(input.node_id, input.index, nid, 0);
g.add_connection(rois.node_id, rois.index, nid, 1);
set_node_params(g, nid, params);
return nid;
}
NodeID GraphBuilder::add_scale_layer(Graph &g, const NodeParams &params, NodeIdxPair input, ITensorAccessorUPtr mul_accessor, ITensorAccessorUPtr add_accessor)
{
CHECK_NODEIDX_PAIR(input, g);
// Get input tensor descriptor
const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
const DataLayout input_data_layout = input_tensor_desc.layout;
// Create mul node
TensorDescriptor mul_desc = input_tensor_desc;
const size_t C = input_tensor_desc.shape[get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL)];
mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), 1);
mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), 1);
mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL), C);
NodeID mul_const_nid = add_const_node_with_name(g, params, "Mul", mul_desc, std::move(mul_accessor));
NodeIdxPair mul_const_nidxp = { mul_const_nid, 0 };
// Create add node
TensorDescriptor add_desc = mul_desc;
NodeID add_const_nid = add_const_node_with_name(g, params, "Add", add_desc, std::move(add_accessor));
NodeIdxPair add_const_nidxp = { add_const_nid, 0 };
// Create node and connect
NodeID mul_node = GraphBuilder::add_elementwise_node(g, params, input, mul_const_nidxp, EltwiseOperation::Mul);
NodeIdxPair mulnode_nidxp = { mul_node, 0 };
NodeID add_node = GraphBuilder::add_elementwise_node(g, params, mulnode_nidxp, add_const_nidxp, EltwiseOperation::Add);
return add_node;
}
NodeID GraphBuilder::add_softmax_node(Graph &g, NodeParams params, NodeIdxPair input, float beta)
{
return create_simple_single_input_output_node<SoftmaxLayerNode>(g, params, input, beta);
}
NodeID GraphBuilder::add_slice_node(Graph &g, NodeParams params, NodeIdxPair input, Coordinates &starts, Coordinates &ends)
{
return create_simple_single_input_output_node<SliceLayerNode>(g, params, input, starts, ends);
}
NodeID GraphBuilder::add_split_node(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_splits, unsigned int axis)
{
return create_simple_single_input_output_node<SplitLayerNode>(g, params, input, num_splits, axis);
}
NodeID GraphBuilder::add_stack_node(Graph &g, NodeParams params, const std::vector<NodeIdxPair> &inputs, int axis)
{
return create_simple_multiple_input_single_output_node<StackLayerNode>(g, params, inputs, inputs.size(), axis);
}
NodeID GraphBuilder::add_upsample_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D info, InterpolationPolicy upsampling_policy)
{
return create_simple_single_input_output_node<UpsampleLayerNode>(g, params, input, info, upsampling_policy);
}
NodeID GraphBuilder::add_yolo_node(Graph &g, NodeParams params, NodeIdxPair input, ActivationLayerInfo act_info, int32_t num_classes)
{
return create_simple_single_input_output_node<YOLOLayerNode>(g, params, input, act_info, num_classes);
}
} // namespace graph
} // namespace arm_compute