blob: aaa37863cb4b0e00ca5c0e4fc9f01cc4a49f79a1 [file] [log] [blame]
/*
* Copyright (c) 2021-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/cpu/kernels/pool2d/neon/list.h"
namespace arm_compute
{
namespace cpu
{
namespace
{
void pooling2_f32_maxpool_indices(const ITensor *src,
ITensor *dst0,
ITensor *dst1,
PoolingLayerInfo &pool_info,
const Window &window_src,
const Window &window)
{
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 4;
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in(src, window_src);
Iterator out(dst0, window_out);
Iterator indices(dst1, window_out);
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
float32x4_t vres;
float res;
const int pad_right = src->info()->padding().right;
const int pad_left = src->info()->padding().left;
const int pad_horizontal = pad_right + pad_left;
const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
const int in_stride_z = static_cast<int>(src->info()->strides_in_bytes().z());
execute_window_loop(
window_out,
[&](const Coordinates &id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
const int in_x0_offset =
(pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
(pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
const int in_x1_offset =
(pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
(pool_start_y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
const int in_x2_offset =
(pool_start_x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
(pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
const int in_x3_offset =
(pool_start_x + 1 - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
(pool_start_y + 1 - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z());
int x_off = window_start_x;
for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
{
const auto in_x0_ptr = reinterpret_cast<const float *>(in.ptr() + in_x0_offset);
const auto in_x1_ptr = reinterpret_cast<const float *>(in.ptr() + in_x1_offset);
const auto in_x2_ptr = reinterpret_cast<const float *>(in.ptr() + in_x2_offset);
const auto in_x3_ptr = reinterpret_cast<const float *>(in.ptr() + in_x3_offset);
const auto v_x0 = vld1q_f32(in_x0_ptr + x_off);
const auto v_x1 = vld1q_f32(in_x1_ptr + x_off);
const auto v_x2 = vld1q_f32(in_x2_ptr + x_off);
const auto v_x3 = vld1q_f32(in_x3_ptr + x_off);
vres = vmaxq_f32(vmaxq_f32(v_x2, v_x3), vmaxq_f32(v_x0, v_x1));
// Store result
vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
const uint32_t offset_base = offset_no_padding<float>(in.offset(), id, *src->info(), pool_stride_x,
pool_stride_y, DataLayout::NHWC);
const uint32_t offset_x0 = offset_base / sizeof(float) + x_off;
const uint32_t offset_x1 = offset_x0 + in_stride_y / sizeof(float) - pad_horizontal;
const uint32_t offset_x2 =
offset_x0 + in_stride_z / sizeof(float) - pad_horizontal * src->info()->tensor_shape()[1];
const uint32_t offset_x3 = offset_x2 + in_stride_y / sizeof(float) - pad_horizontal;
const uint32x4_t voffset_x0 = {offset_x0, offset_x0 + 1, offset_x0 + 2, offset_x0 + 3};
const uint32x4_t voffset_x1 = {offset_x1, offset_x1 + 1, offset_x1 + 2, offset_x1 + 3};
const uint32x4_t voffset_x2 = {offset_x2, offset_x2 + 1, offset_x2 + 2, offset_x2 + 3};
const uint32x4_t voffset_x3 = {offset_x3, offset_x3 + 1, offset_x3 + 2, offset_x3 + 3};
const uint32x4_t tmp_indices0 = vbslq_u32(vcgeq_f32(v_x0, v_x1), voffset_x0, voffset_x1);
const uint32x4_t tmp_indices1 = vbslq_u32(vcgeq_f32(v_x2, v_x3), voffset_x2, voffset_x3);
const uint32x4_t tmp_indices2 =
vbslq_u32(vcgeq_f32(vmaxq_f32(v_x0, v_x1), vmaxq_f32(v_x2, v_x3)), tmp_indices0, tmp_indices1);
// Store indices
vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, tmp_indices2);
}
// Left-overs loop
for (; x_off < window_end_x; ++x_off)
{
const auto x0 = *(reinterpret_cast<const float *>(in.ptr() + in_x0_offset) + x_off);
const auto x1 = *(reinterpret_cast<const float *>(in.ptr() + in_x1_offset) + x_off);
const auto x2 = *(reinterpret_cast<const float *>(in.ptr() + in_x2_offset) + x_off);
const auto x3 = *(reinterpret_cast<const float *>(in.ptr() + in_x3_offset) + x_off);
res = std::max(std::max(x2, x3), std::max(x0, x1));
// Store result
*(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
const uint32_t offset_base = offset_no_padding<float>(in.offset(), id, *src->info(), pool_stride_x,
pool_stride_y, DataLayout::NHWC);
const uint32_t offset_x0 = offset_base / sizeof(float) + x_off;
const uint32_t offset_x1 = offset_x0 + in_stride_y / sizeof(float) - pad_horizontal;
const uint32_t offset_x2 =
offset_x0 + in_stride_z / sizeof(float) - pad_horizontal * src->info()->tensor_shape()[1];
const uint32_t offset_x3 = offset_x2 + in_stride_y / sizeof(float) - pad_horizontal;
const uint32_t tmp_idx0 = (x0 >= x1) ? offset_x0 : offset_x1;
const uint32_t tmp_idx1 = (x2 >= x3) ? offset_x2 : offset_x3;
const uint32_t tmp_idx2 = (std::max(x0, x1) >= std::max(x2, x3)) ? tmp_idx0 : tmp_idx1;
// Store indices
*(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = tmp_idx2;
}
},
in, out, indices);
}
} // namespace
void poolingMxN_fp32_neon_nhwc_kernel_indices(
const ITensor *src, ITensor *dst0, ITensor *dst1, const PoolingLayerInfo &pool_info, const Window &window)
{
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
constexpr int window_step_x = 4;
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator out(dst0, window_out);
Iterator indices(dst1, window_out);
const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
float32x4_t vres;
uint32x4_t vidx;
constexpr int idx_width = 1;
constexpr int idx_height = 2;
constexpr int idx_batch = 3;
const int y_stride = static_cast<int>(src->info()->strides_in_bytes().y());
const int z_stride = static_cast<int>(src->info()->strides_in_bytes().z());
const int n_stride = static_cast<int>(src->info()->strides_in_bytes()[idx_batch]);
const int input_dim_w = src->info()->dimension(idx_width);
const int input_dim_h = src->info()->dimension(idx_height);
const uint8_t *in_ptr_start = src->buffer() + src->info()->offset_first_element_in_bytes();
execute_window_loop(
window_out,
[&](const Coordinates &id)
{
const int idx_width = static_cast<int>(id.y()) * pool_stride_x - pool_pad_left;
const int idx_height = static_cast<int>(id.z()) * pool_stride_y - pool_pad_top;
const int pool_start_x = std::max(0, -idx_width);
const int pool_start_y = std::max(0, -idx_height);
const int pool_end_x = std::min(pool_size_x, input_dim_w - idx_width);
const int pool_end_y = std::min(pool_size_y, input_dim_h - idx_height);
const uint8_t *in_ptr_n = in_ptr_start + id[idx_batch] * n_stride;
const int in_ptr_y_offset = (z_stride * idx_height) + (pool_start_y * z_stride);
const int in_ptr_x_offset = (y_stride * idx_width) + (pool_start_x * y_stride);
int x_off = window_start_x;
for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
{
vres = vdupq_n_f32(min_value);
vidx = vdupq_n_u32(0U);
const uint8_t *in_ptr_y = in_ptr_n + in_ptr_y_offset + in_ptr_x_offset;
uint32_t curr_kernel_index = pool_size_x * pool_start_y;
for (int y = pool_start_y; y < pool_end_y; ++y)
{
const uint8_t *in_ptr_x = in_ptr_y + (x_off * sizeof(float));
curr_kernel_index += pool_start_x;
for (int x = pool_start_x; x < pool_end_x; ++x)
{
const float32x4_t data = vld1q_f32(reinterpret_cast<const float *>(in_ptr_x));
const uint32x4_t vidx_curr = vdupq_n_u32(curr_kernel_index);
const uint32x4_t idxMask = vcgtq_f32(data, vres);
vidx = vbslq_u32(idxMask, vidx_curr, vidx);
vres = vmaxq_f32(vres, data);
in_ptr_x += y_stride;
curr_kernel_index++;
}
curr_kernel_index += (pool_size_x - pool_end_x);
in_ptr_y += z_stride;
}
// Store result
vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
vst1q_u32(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off, vidx);
}
// Left-overs loop
for (; x_off < window_end_x; ++x_off)
{
float res = min_value;
uint32_t idx = 0U;
const uint8_t *in_ptr_y = in_ptr_n + in_ptr_y_offset + in_ptr_x_offset;
for (int y = pool_start_y; y < pool_end_y; ++y)
{
const uint8_t *in_ptr_x = in_ptr_y + (x_off * sizeof(float));
for (int x = pool_start_x; x < pool_end_x; ++x)
{
const float data = *(reinterpret_cast<const float *>(in_ptr_x));
if (data > res)
{
idx = pool_size_x * y + x;
res = data;
}
in_ptr_x += y_stride;
}
in_ptr_y += z_stride;
}
// Store result
*(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
*(reinterpret_cast<uint32_t *>(indices.ptr()) + x_off) = idx;
}
},
out, indices);
}
void poolingMxN_fp32_neon_nhwc(const ITensor *src,
ITensor *dst0,
ITensor *dst1,
PoolingLayerInfo &pool_info,
const Window &window_src,
const Window &window)
{
if ((pool_info.pool_type == PoolingType::MAX) && pool_info.use_kernel_indices && (dst1 != nullptr))
{
poolingMxN_fp32_neon_nhwc_kernel_indices(src, dst0, dst1, pool_info, window);
}
else if (pool_info.pool_size == Size2D(2, 2) && pool_info.pool_type == PoolingType::MAX &&
!pool_info.pad_stride_info.has_padding() && (dst1 != nullptr))
{
pooling2_f32_maxpool_indices(src, dst0, dst1, pool_info, window_src, window);
}
else
{
const int window_start_x = window.x().start();
const int window_end_x = window.x().end();
const int window_step_x = 4;
Window window_out = window;
window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in(src, window_src);
Iterator out(dst0, window_out);
const int pool_size_x =
pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.width;
const int pool_size_y =
pool_info.is_global_pooling ? src->info()->tensor_shape().z() : pool_info.pool_size.height;
const int pool_pad_right = pool_info.pad_stride_info.pad_right();
const int pool_pad_top = pool_info.pad_stride_info.pad_top();
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x = 0;
int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
const int upper_bound_w = src->info()->dimension(1) + (pool_info.exclude_padding ? 0 : pool_pad_right);
const int upper_bound_h = src->info()->dimension(2) + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
float32x4_t vres;
execute_window_loop(
window_out,
[&](const Coordinates &id)
{
const int idx_width = id.y() * pool_stride_x;
const int idx_height = id.z() * pool_stride_y;
const int pool_limit_y = pool_pad_top - idx_height;
const int pool_limit_x = pool_pad_left - idx_width;
const int pool_start_y = std::max(0, window_src.z().start() + pool_limit_y);
const int pool_end_y = std::min(pool_size_y, window_src.z().end() + pool_limit_y);
const int pool_start_x = std::max(0, window_src.y().start() + pool_limit_x);
const int pool_end_x = std::min(pool_size_x, window_src.y().end() + pool_limit_x);
int x_off = window_start_x;
for (; x_off <= (window_end_x - window_step_x); x_off += window_step_x)
{
if (pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale_pool2d(
pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
const float32x4_t scale_v = vdupq_n_f32(scale);
// Perform pooling
vres = vdupq_n_f32(0.0f);
for (int y = pool_start_y; y < pool_end_y; ++y)
{
for (int x = pool_start_x; x < pool_end_x; ++x)
{
const float32x4_t data = vld1q_f32(
reinterpret_cast<const float *>(
in.ptr() +
(x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
(y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
x_off);
// Get power of 2 in case of l2 pooling and accumulate
if (pool_info.pool_type == PoolingType::L2)
{
vres = vmlaq_f32(vres, data, data);
}
else
{
vres = vaddq_f32(vres, data);
}
}
}
// Divide by scale
vres = vmulq_f32(vres, scale_v);
}
else
{
vres = vdupq_n_f32(min_value);
for (int y = pool_start_y; y < pool_end_y; ++y)
{
for (int x = pool_start_x; x < pool_end_x; ++x)
{
const float32x4_t data = vld1q_f32(
reinterpret_cast<const float *>(
in.ptr() +
(x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
(y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
x_off);
vres = vmaxq_f32(vres, data);
}
}
}
// Calculate square-root in case of l2 pooling
if (pool_info.pool_type == PoolingType::L2)
{
float32x4_t l2_res = {static_cast<float>(sqrt(vgetq_lane_f32(vres, 0))),
static_cast<float>(sqrt(vgetq_lane_f32(vres, 1))),
static_cast<float>(sqrt(vgetq_lane_f32(vres, 2))),
static_cast<float>(sqrt(vgetq_lane_f32(vres, 3)))};
vres = l2_res;
}
// Store result
vst1q_f32(reinterpret_cast<float *>(out.ptr()) + x_off, vres);
}
// Left-overs loop
for (; x_off < window_end_x; ++x_off)
{
float res = 0.0f;
if (pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
const float scale = calculate_avg_scale_pool2d(
pool_info.exclude_padding, DataLayout::NHWC, id, pool_size_x, pool_size_y, upper_bound_w,
upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
for (int y = pool_start_y; y < pool_end_y; ++y)
{
for (int x = pool_start_x; x < pool_end_x; ++x)
{
const float data =
*(reinterpret_cast<const float *>(
in.ptr() +
(x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
(y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
x_off);
// Get power of 2 in case of l2 pooling and accumulate
if (pool_info.pool_type == PoolingType::L2)
{
res += data * data;
}
else
{
res += data;
}
}
}
// Divide by scale
res *= scale;
}
else
{
res = min_value;
for (int y = pool_start_y; y < pool_end_y; ++y)
{
for (int x = pool_start_x; x < pool_end_x; ++x)
{
const float data =
*(reinterpret_cast<const float *>(
in.ptr() +
(x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().y()) +
(y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().z())) +
x_off);
res = std::max(res, data);
}
}
}
// Calculate square-root in case of l2 pooling
if (pool_info.pool_type == PoolingType::L2)
{
res = std::sqrt(res);
}
// Store result
*(reinterpret_cast<float *>(out.ptr()) + x_off) = res;
}
},
in, out);
}
}
} // namespace cpu
} // namespace arm_compute