blob: 22231cf019c75642529f41c36317dcbc85a835d1 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*
* NOTE: Header to be included by implementation files only.
*
* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*/
#include <algorithm>
#include <cstdint>
#include "depthwise.hpp"
#include "padding.hpp"
#include "utils.hpp"
#pragma once
#define MEMBERFN(TOUT) template <\
unsigned int OutputTileRows, unsigned int OutputTileColumns,\
unsigned int KernelRows, unsigned int KernelColumns,\
unsigned int StrideRows, unsigned int StrideColumns,\
typename TIn, typename TBias, typename TOut,\
typename Derived\
> TOUT DepthwiseConvolutionBase<\
OutputTileRows, OutputTileColumns,\
KernelRows, KernelColumns,\
StrideRows, StrideColumns,\
TIn, TBias, TOut, Derived\
>
using namespace neon_convolution_kernels;
namespace depthwise
{
template <unsigned int KernelRows, unsigned int KernelColumns, size_t WeightSize, size_t BiasSize>
struct PackParameters
{
static void execute(
unsigned int n_channels,
void *buffer,
const void *weights,
unsigned int weight_row_stride,
unsigned int weight_col_stride,
const void *biases
);
};
const unsigned int CHANNEL_BLOCK = 16;
MEMBERFN(int)::get_output_size(
const int dim_size, const unsigned int padding_before, const unsigned int padding_after
)
{
return iceildiv(dim_size + padding_before + padding_after - KernelRows + 1, StrideRows);
}
MEMBERFN(int)::output_size(
const int dim_size, const unsigned int padding_before, const unsigned int padding_after
) const
{
return get_output_size(dim_size, padding_before, padding_after);
}
MEMBERFN()::DepthwiseConvolutionBase(
const int n_batches,
const int n_input_rows,
const int n_input_cols,
const int n_channels,
ActivationFunction activation,
const unsigned int padding_top,
const unsigned int padding_left,
const unsigned int padding_bottom,
const unsigned int padding_right
) : DepthwiseConvolutionBase(
n_batches, n_input_rows, n_input_cols, n_channels,
get_output_size(n_input_rows, padding_top, padding_bottom),
get_output_size(n_input_cols, padding_left, padding_right),
activation,
padding_top, padding_left, padding_bottom, padding_right
)
{
}
MEMBERFN()::DepthwiseConvolutionBase(
const int n_batches,
const int n_input_rows,
const int n_input_cols,
const int n_channels,
const int n_output_rows,
const int n_output_cols,
ActivationFunction activation,
const unsigned int padding_top,
const unsigned int padding_left,
const unsigned int padding_bottom,
const unsigned int padding_right
) : _input(nullptr), _output(nullptr),
_packed_parameters(nullptr),
_working_space(nullptr),
_n_batches(n_batches),
_n_input_rows(n_input_rows),
_n_input_cols(n_input_cols),
_n_channels(n_channels),
_n_output_rows(n_output_rows),
_n_output_cols(n_output_cols),
_n_tile_rows(iceildiv(_n_output_rows, output_tile_rows)),
_n_tile_cols(iceildiv(_n_output_cols, output_tile_cols)),
_padding_top(padding_top),
_padding_left(padding_left),
_padding_bottom(padding_bottom),
_padding_right(padding_right),
_activation(activation),
_input_col_stride(0), _input_row_stride(0), _input_batch_stride(0),
_output_col_stride(0), _output_row_stride(0), _output_batch_stride(0)
{
}
MEMBERFN(void)::set_input(const void* const inptr)
{
set_input(inptr, _n_channels);
}
MEMBERFN(void)::set_input(const void* const inptr, const int ld_col)
{
set_input(inptr, _n_input_cols * ld_col, ld_col);
}
MEMBERFN(void)::set_input(const void* const inptr, const int ld_row, const int ld_col)
{
set_input(inptr, _n_input_rows * ld_row, ld_row, ld_col);
}
MEMBERFN(void)::set_input(const void* const inptr, const int ld_batch, const int ld_row, const int ld_col)
{
_input = static_cast<const TIn *>(inptr);
_input_batch_stride = ld_batch;
_input_row_stride = ld_row;
_input_col_stride = ld_col;
}
MEMBERFN(void)::set_output(void* const outptr)
{
set_output(outptr, _n_channels);
}
MEMBERFN(void)::set_output(void* const outptr, const int ld_col)
{
set_output(outptr, _n_output_cols * ld_col, ld_col);
}
MEMBERFN(void)::set_output(void* const outptr, const int ld_row, const int ld_col)
{
set_output(outptr, _n_output_rows * ld_row, ld_row, ld_col);
}
MEMBERFN(void)::set_output(void* const outptr, const int ld_batch, const int ld_row, const int ld_col)
{
_output = static_cast<TOut *>(outptr);
_output_batch_stride = ld_batch;
_output_row_stride = ld_row;
_output_col_stride = ld_col;
}
MEMBERFN(size_t)::get_packed_params_size(void) const
{
return _n_channels * (sizeof(TIn)*KernelRows*KernelColumns + sizeof(TBias));
}
MEMBERFN(void)::set_packed_params_buffer(void *buffer)
{
_packed_parameters = buffer;
}
MEMBERFN(void)::pack_params(const void *weights, const void *biases) const
{
static_cast<const Derived *>(this)->pack_params(_packed_parameters, weights, biases);
}
MEMBERFN(void)::pack_params(void *buffer, const void *weights, const void *biases) const
{
const unsigned int weight_col_stride = _n_channels;
const unsigned int weight_row_stride = KernelColumns * weight_col_stride;
static_cast<const Derived *>(this)->pack_params(
buffer, weights, weight_row_stride, weight_col_stride, biases
);
}
MEMBERFN(void)::pack_params(
void * const buffer,
const void * const weights,
const unsigned int weight_row_stride,
const unsigned int weight_col_stride,
const void * const biases
) const
{
static_cast<const Derived *>(this)->_pack_params(
buffer, weights, weight_row_stride, weight_col_stride, biases
);
}
MEMBERFN(void)::_pack_params(
void * const buffer,
const void * const weights,
const unsigned int weight_row_stride,
const unsigned int weight_col_stride,
const void * const biases
) const
{
// Default implementation
PackParameters<KernelRows, KernelColumns, sizeof(TIn), sizeof(TOut)>::execute(
_n_channels, buffer, weights, weight_row_stride, weight_col_stride, biases
);
}
MEMBERFN(size_t)::get_working_space_size(const unsigned int nthreads) const
{
return nthreads * (
_get_input_working_space_size() + _get_output_working_space_size()
);
}
MEMBERFN(void)::set_working_space(void *buffer)
{
_working_space = buffer;
}
MEMBERFN(size_t)::_get_input_working_space_size(void) const
{
return sizeof(TIn) * _n_channels;
}
MEMBERFN(size_t)::_get_output_working_space_size(void) const
{
return sizeof(TOut) * _n_channels;
}
MEMBERFN(void *)::_get_input_working_space(const unsigned int threadid) const
{
return static_cast<uint8_t*>(_working_space) + threadid * (
_get_input_working_space_size() + _get_output_working_space_size()
);
}
MEMBERFN(void *)::_get_output_working_space(const unsigned int threadid) const
{
return static_cast<uint8_t*>(_get_input_working_space(threadid)) + _get_input_working_space_size();
}
MEMBERFN(unsigned int)::get_window() const
{
// Parallelise over blocks of channels.
return iceildiv(_n_channels, CHANNEL_BLOCK);
}
MEMBERFN(void)::run(
const unsigned int start,
const unsigned int stop,
const unsigned int threadid
)
{
// Clear the input padding buffer
TIn *buf = static_cast<TIn *>(_get_input_working_space(threadid));
const TIn pad_value = static_cast<Derived *>(this)->_input_padding_value();
for (int n = 0; n < _n_channels; n++)
{
buf[n] = pad_value;
}
// Parallelise over blocks of channels
const auto start_channel = CHANNEL_BLOCK * start;
const auto stop_channel = std::min<unsigned int>(_n_channels, CHANNEL_BLOCK * stop);
const auto params_size_per_channel = this->get_packed_params_size()/_n_channels;
// Compute top and bottom padding for input and output
const int input_pad_top = _padding_top;
const int input_pad_left = _padding_left;
constexpr int tile_overlap = kernel_rows - stride_rows;
// Perform the convolution by calling `process_tile_row` for each tile row in
// each batch.
for (int batch = 0; batch < _n_batches; batch++)
{
const TIn* const inptr_batch = _input + batch*_input_batch_stride;
TOut* const outptr_batch = _output + batch*_output_batch_stride;
// Loop over rows of tiles
for (int tile_i = 0; tile_i < _n_tile_rows; tile_i++)
{
// Pointer to the row
const int input_row_offset = (tile_i == 0) ? 0 : input_pad_top;
const TIn* const inptr_row = (inptr_batch + ((inner_tile_rows - tile_overlap)*tile_i - input_row_offset)*_input_row_stride);
TOut* const outptr_row = outptr_batch + output_tile_rows * tile_i * _output_row_stride;
// Input padding (top + bottom) for the row
const int input_row_top = tile_i*(inner_tile_rows - tile_overlap) - input_pad_top;
const int input_row_bottom = input_row_top + inner_tile_rows;
const int input_row_pad_top = (tile_i == 0) ? input_pad_top : 0;
const int input_row_pad_bottom = std::max(0, input_row_bottom - _n_input_rows);
// Output padding (bottom) for the row
const int output_row_bottom = (tile_i + 1)*output_tile_rows;
const int output_row_pad_bottom = std::max(0, output_row_bottom - _n_output_rows);
// Get the offset into the packed parameters
const auto params_ptr = static_cast<const uint8_t*>(_packed_parameters) +
start_channel*params_size_per_channel;
// Process the row
process_tile_row(
threadid,
stop_channel - start_channel,
params_ptr,
inptr_row + start_channel,
outptr_row + start_channel,
input_row_pad_top, input_pad_left, input_row_pad_bottom,
output_row_pad_bottom,
_n_tile_cols, _n_input_cols, _n_output_cols
);
}
}
}
MEMBERFN(void)::process_tile_row(
const unsigned int threadid,
const int n_channels,
const void* const packed_params,
const TIn* const inptr,
TOut* const outptr,
const int row_pad_in_top,
const int row_pad_in_left,
const int row_pad_in_bottom,
const int row_pad_out_bottom,
const int n_tiles,
const int n_input_cols,
const int n_output_cols
)
{
constexpr int tile_overlap = kernel_cols - stride_cols;
// Loop over columns of tiles
for (int tile_j = 0; tile_j < n_tiles; tile_j++)
{
// Input padding (left + right) for the tile
const int t_pad_in_left = (tile_j == 0) ? row_pad_in_left : 0;
const int t_in_start = tile_j*(inner_tile_cols - tile_overlap) - row_pad_in_left;
const int t_in_end = t_in_start + inner_tile_cols;
const int t_pad_in_right = std::max(0, t_in_end - n_input_cols);
// Output padding (right) for the tile
const int t_out_end = (tile_j + 1) * output_tile_cols;
const int t_pad_out_right = std::max(0, t_out_end - n_output_cols);
// Get pointers into the inputs and outputs
const int col_offset = (tile_j == 0) ? 0 : row_pad_in_left;
const TIn* const inptr_col = (inptr + ((inner_tile_cols - tile_overlap)*tile_j - col_offset)*_input_col_stride);
TOut* const outptr_col = outptr + tile_j * output_tile_cols * _output_col_stride;
// Process just this tile
process_tile(
threadid, n_channels, packed_params, inptr_col, outptr_col,
row_pad_in_top, t_pad_in_left, row_pad_in_bottom, t_pad_in_right, // Input paddings
row_pad_out_bottom, t_pad_out_right // Output paddings
);
}
}
MEMBERFN(TIn)::_input_padding_value(void) const
{
return static_cast<TIn>(0);
}
MEMBERFN(void)::process_tile(
const unsigned int threadid,
const int n_channels,
const void* const packed_params,
const TIn* const inptr,
TOut* const outptr,
const int pad_in_top,
const int pad_in_left,
const int pad_in_bottom,
const int pad_in_right,
const int pad_out_bottom,
const int pad_out_right
)
{
Derived * dthis = static_cast<Derived *>(this);
const bool pad_input = pad_in_top || pad_in_left || pad_in_bottom || pad_in_right;
const bool pad_output = pad_out_bottom || pad_out_right;
if (!pad_input && !pad_output)
{
switch(_activation)
{
case ActivationFunction::ReLU:
dthis->template execute_tile<ActivationFunction::ReLU>(
n_channels, packed_params,
inptr, _input_row_stride, _input_col_stride,
outptr, _output_row_stride, _output_col_stride
);
break;
case ActivationFunction::ReLU6:
dthis->template execute_tile<ActivationFunction::ReLU6>(
n_channels, packed_params,
inptr, _input_row_stride, _input_col_stride,
outptr, _output_row_stride, _output_col_stride
);
break;
default:
dthis->template execute_tile<ActivationFunction::None>(
n_channels, packed_params,
inptr, _input_row_stride, _input_col_stride,
outptr, _output_row_stride, _output_col_stride
);
break;
}
}
else
{
// Create arrays of input and output pointers, pointing padded elements to
// the working space padding buffers provided.
const TIn *inptrs[inner_tile_rows][inner_tile_cols];
for (int i = 0; i < inner_tile_rows; i++)
{
for (int j = 0; j < inner_tile_cols; j++)
{
if (i < pad_in_top || (inner_tile_rows - pad_in_bottom) <= i ||
j < pad_in_left || (inner_tile_cols - pad_in_right) <= j)
{
// Padded input
inptrs[i][j] = static_cast<const TIn *>(_get_input_working_space(threadid));
}
else
{
inptrs[i][j] = inptr + (i - pad_in_top)*_input_row_stride + (j - pad_in_left)*_input_col_stride;
}
}
}
TOut *outptrs[output_tile_rows][output_tile_cols];
for (int i = 0; i < output_tile_rows; i++)
{
for (int j = 0; j < output_tile_cols; j++)
{
if (i < (output_tile_rows - pad_out_bottom) &&
j < (output_tile_cols - pad_out_right))
{
outptrs[i][j] = outptr + i*_output_row_stride + j*_output_col_stride;
}
else
{
outptrs[i][j] = static_cast<TOut *>(_get_output_working_space(threadid));
}
}
}
switch(_activation)
{
case ActivationFunction::ReLU:
dthis->template execute_tile<ActivationFunction::ReLU>(
n_channels, packed_params, inptrs, outptrs
);
break;
case ActivationFunction::ReLU6:
dthis->template execute_tile<ActivationFunction::ReLU6>(
n_channels, packed_params, inptrs, outptrs
);
break;
default:
dthis->template execute_tile<ActivationFunction::None>(
n_channels, packed_params, inptrs, outptrs
);
break;
}
}
}
MEMBERFN(int)::n_channels(void) const
{
return _n_channels;
}
} // namespace depthwise