blob: 5136bc15c466e3c4a880c14f763109ef347d02cd [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm.hpp"
#include "output.hpp"
namespace winograd
{
template <>
void OutputTransform<3, 3, 4, 4, float, float, WinogradRoots::Integers>::transform_tile(
const int n_channels,
const float* inptr,
const int matrix_stride,
const float* bptr,
float* const output,
const int output_row_stride,
const int output_col_stride,
const float output_min,
const float output_max
)
{
// Construct a map to the output cells
float *outptrs[output_tile_rows][output_tile_cols];
for (int i = 0; i < output_tile_rows; i++)
{
for (int j = 0; j < output_tile_cols; j++)
{
outptrs[i][j] = output + i*output_row_stride + j*output_col_stride;
}
}
// For each channel of the output
int channels_remaining = n_channels;
#ifdef __aarch64__
for (; channels_remaining >= 4; channels_remaining -= 4)
{
// Matrices used and computed during this transform
float32x4_t F[4][4], FZ[4][2], f[2][2], b;
// Read a 4x4 tile in the Winograd domain
for (int i = 0, m = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++, m++)
{
F[i][j] = vld1q_f32(inptr + m*matrix_stride);
}
}
inptr += 4;
// Compute the matrix F Z
for (int i = 0; i < 4; i++)
{
// FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
FZ[i][0] = vaddq_f32(vaddq_f32(F[i][0], F[i][1]), F[i][2]);
// FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
FZ[i][1] = vsubq_f32(vsubq_f32(F[i][1], F[i][2]), F[i][3]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
// f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
f[0][j] = vaddq_f32(vaddq_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
// f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
f[1][j] = vsubq_f32(vsubq_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
}
// Load the bias vector
if (bptr != nullptr)
{
b = vld1q_f32(bptr);
bptr += 4;
}
else
{
b = vdupq_n_f32(0.0f);
}
// Write out the output tile
for (int i = 0; i < output_tile_rows; i++)
{
for (int j = 0; j < output_tile_cols; j++)
{
const auto y =
vmaxq_f32(vminq_f32(vaddq_f32(f[i][j], b), vdupq_n_f32(output_max)),
vdupq_n_f32(output_min));
vst1q_f32(outptrs[i][j], y);
outptrs[i][j] += 4;
}
}
}
#endif // __aarch64__
#ifdef __arm_any__
for (; channels_remaining >= 2; channels_remaining -= 2)
{
// Matrices used and computed during this transform
float32x2_t F[4][4], FZ[4][2], f[2][2], b;
// Read a 4x4 tile in the Winograd domain
for (int i = 0, m = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++, m++)
{
F[i][j] = vld1_f32(inptr + m*matrix_stride);
}
}
inptr += 2;
// Compute the matrix F Z
for (int i = 0; i < 4; i++)
{
// FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
FZ[i][0] = vadd_f32(vadd_f32(F[i][0], F[i][1]), F[i][2]);
// FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
FZ[i][1] = vsub_f32(vsub_f32(F[i][1], F[i][2]), F[i][3]);
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
// f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
f[0][j] = vadd_f32(vadd_f32(FZ[0][j], FZ[1][j]), FZ[2][j]);
// f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
f[1][j] = vsub_f32(vsub_f32(FZ[1][j], FZ[2][j]), FZ[3][j]);
}
// Load the bias vector
if (bptr != nullptr)
{
b = vld1_f32(bptr);
bptr += 2;
}
else
{
b = vdup_n_f32(0.0f);
}
// Write out the output tile
for (int i = 0; i < output_tile_rows; i++)
{
for (int j = 0; j < output_tile_cols; j++)
{
const auto y =
vmax_f32(vmin_f32(vadd_f32(f[i][j], b), vdup_n_f32(output_max)),
vdup_n_f32(output_min));
vst1_f32(outptrs[i][j], y);
outptrs[i][j] += 2;
}
}
}
#endif // __arm_any__
for (; channels_remaining; channels_remaining--)
{
// Matrices used and computed during this transform
float F[4][4], FZ[4][2], f[2][2], b;
// Read a 4x4 tile in the Winograd domain
for (int i = 0, m = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++, m++)
{
F[i][j] = *(inptr + m*matrix_stride);
}
}
inptr++;
// Compute the matrix F Z
for (int i = 0; i < 4; i++)
{
FZ[i][0] = F[i][0] + F[i][1] + F[i][2];
FZ[i][1] = F[i][1] - F[i][2] - F[i][3];
}
// Compute the output tile f = ZT F Z
for (int j = 0; j < 2; j++)
{
f[0][j] = FZ[0][j] + FZ[1][j] + FZ[2][j];
f[1][j] = FZ[1][j] - FZ[2][j] - FZ[3][j];
}
// Load the bias
if (bptr != nullptr)
{
b = *(bptr++);
}
else
{
b = 0.0f;
}
// Write out the output tile
for (int i = 0; i < output_tile_rows; i++)
{
for (int j = 0; j < output_tile_cols; j++)
{
const auto y = std::max(std::min(f[i][j] + b, output_max), output_min);
*(outptrs[i][j]++) = y;
}
}
}
}
template class OutputTransform<3, 3, 4, 4, float, float, WinogradRoots::Integers>;
} // namespace