blob: e55bcb632ffca602ae08fe868a13926b3183dea0 [file] [log] [blame]
/*
* Copyright (c) 2022 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <cstddef>
#include <arm_neon.h>
namespace arm_conv {
namespace winograd {
namespace weight_transform {
void arm_fp32_2x2_3x3(
unsigned int n_channels,
const float *inptr, size_t ld_weight_row, size_t ld_weight_col,
float *outptr, size_t matrix_stride
)
{
constexpr auto inner_tile_i = 4u;
constexpr auto inner_tile_j = 4u;
#ifdef __aarch64__
// For each output channel
for (; n_channels >= 4u; n_channels -= 4)
{
// Matrices used and computed in this kernel
float32x4_t w[3][3], Ww[inner_tile_i][3], V[inner_tile_i][inner_tile_j];
// Read weights
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
w[i][j] = vld1q_f32(inptr + i*ld_weight_row + j*ld_weight_col);
}
}
// Compute the matrix W w
for (int j = 0; j < 3; j++)
{
Ww[0][j] = w[0][j];
// Ww[1][j] = 0.5*(w[0][j] + w[1][j] + w[2][j]);
Ww[1][j] = vmulq_n_f32(vaddq_f32(vaddq_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
// Ww[2][j] = 0.5*(w[0][j] - w[1][j] + w[2][j]);
Ww[2][j] = vmulq_n_f32(vaddq_f32(vsubq_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
Ww[3][j] = w[2][j];
}
// Compute V = W w WT
for (auto i = 0u; i < inner_tile_i; i++)
{
V[i][0] = Ww[i][0];
// V[i][1] = 0.5*(Ww[i][0] + Ww[i][1] + Ww[i][2]);
V[i][1] = vmulq_n_f32(vaddq_f32(vaddq_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
// V[i][2] = 0.5*(Ww[i][0] - Ww[i][1] + Ww[i][2]);
V[i][2] = vmulq_n_f32(vaddq_f32(vsubq_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
V[i][3] = Ww[i][2];
}
// Store the transformed weights
for (auto i = 0u, m = 0u; i < inner_tile_i; i++)
{
for (auto j = 0u; j < inner_tile_j; j++, m++)
{
vst1q_f32(outptr + m*matrix_stride, V[i][j]);
}
}
inptr += 4;
outptr += 4;
}
#endif // __aarch64__
for (; n_channels >= 2u; n_channels -= 2)
{
// Matrices used and computed in this kernel
float32x2_t w[3][3], Ww[inner_tile_i][3], V[inner_tile_i][inner_tile_j];
// Read weights
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
w[i][j] = vld1_f32(inptr + i*ld_weight_row + j*ld_weight_col);
}
}
// Compute the matrix W w
for (int j = 0; j < 3; j++)
{
Ww[0][j] = w[0][j];
// Ww[1][j] = 0.5*(w[0][j] + w[1][j] + w[2][j]);
Ww[1][j] = vmul_n_f32(vadd_f32(vadd_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
// Ww[2][j] = 0.5*(w[0][j] - w[1][j] + w[2][j]);
Ww[2][j] = vmul_n_f32(vadd_f32(vsub_f32(w[0][j], w[1][j]), w[2][j]), 0.5f);
Ww[3][j] = w[2][j];
}
// Compute V = W w WT
for (auto i = 0u; i < inner_tile_i; i++)
{
V[i][0] = Ww[i][0];
// V[i][1] = 0.5*(Ww[i][0] + Ww[i][1] + Ww[i][2]);
V[i][1] = vmul_n_f32(vadd_f32(vadd_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
// V[i][2] = 0.5*(Ww[i][0] - Ww[i][1] + Ww[i][2]);
V[i][2] = vmul_n_f32(vadd_f32(vsub_f32(Ww[i][0], Ww[i][1]), Ww[i][2]), 0.5f);
V[i][3] = Ww[i][2];
}
// Store the transformed weights
for (auto i = 0u, m = 0u; i < inner_tile_i; i++)
{
for (auto j = 0u; j < inner_tile_j; j++, m++)
{
vst1_f32(outptr + m*matrix_stride, V[i][j]);
}
}
inptr += 2;
outptr += 2;
}
for (; n_channels; n_channels--)
{
// Matrices used and computed in this kernel
float w[3][3], Ww[inner_tile_i][3], V[inner_tile_i][inner_tile_j];
// Read weights
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
w[i][j] = *(inptr + i*ld_weight_row + j*ld_weight_col);
}
}
// Compute the matrix W w
for (int j = 0; j < 3; j++)
{
Ww[0][j] = w[0][j];
Ww[1][j] = 0.5*(w[0][j] + w[1][j] + w[2][j]);
Ww[2][j] = 0.5*(w[0][j] - w[1][j] + w[2][j]);
Ww[3][j] = w[2][j];
}
// Compute V = W w WT
for (auto i = 0u; i < inner_tile_i; i++)
{
V[i][0] = Ww[i][0];
V[i][1] = 0.5*(Ww[i][0] + Ww[i][1] + Ww[i][2]);
V[i][2] = 0.5*(Ww[i][0] - Ww[i][1] + Ww[i][2]);
V[i][3] = Ww[i][2];
}
// Store the transformed weights
for (auto i = 0u, m = 0u; i < inner_tile_i; i++)
{
for (auto j = 0u; j < inner_tile_j; j++, m++)
{
*(outptr + m*matrix_stride) = V[i][j];
}
}
inptr++;
outptr++;
}
}
} // namespace weight_transform
} // namespace winograd
} // namespace arm_conv