blob: 7be2d6d230ec2c87bfadd1573bfd3aed35497779 [file] [log] [blame]
/*
* Copyright (c) 2021-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/operators/CpuWinogradConv2d.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/FunctionDescriptors.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "src/common/utils/Log.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/kernels/assembly/winograd.hpp"
#include "src/core/NEON/kernels/convolution/common/tensor.hpp"
#include "src/core/NEON/kernels/convolution/common/utils.hpp"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/utils/AssemblyUtils.h"
#include "src/cpu/kernels/CpuWinogradConv2dKernel.h"
#include "src/cpu/kernels/assembly/arm_gemm.hpp"
#include "src/cpu/operators/CpuActivation.h"
#include "src/cpu/operators/CpuPermute.h"
#include "src/cpu/utils/CpuAuxTensorHandler.h"
#include "support/Cast.h"
namespace arm_compute
{
namespace cpu
{
using namespace arm_compute::experimental;
using namespace arm_compute::utils::cast;
namespace
{
inline Tensor4DShape internal_get_shape(const ITensorInfo *in)
{
const DataLayout data_layout = in->data_layout();
const int in_width = in->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH));
const int in_height = in->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT));
const int in_channels = in->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL));
const int in_batches = in->dimension(get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES));
return Tensor4DShape{ in_batches, in_height, in_width, in_channels };
}
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_UNUSED(dst, weights);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(conv_info.stride().first != 1 || conv_info.stride().second != 1, "Winograd layer only supports unit strides.");
if(biases != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
return Status{};
}
bool get_winograd_kernel_implementation(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst,
const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math,
arm_conv::winograd::WinogradImpl *winograd_impl, std::unique_ptr<arm_conv::ConvolutionArgs> &conv_args)
{
arm_conv::winograd::WinogradConfig winograd_cfg;
arm_gemm::GemmConfig cfg;
const DataType data_type = src->data_type();
Tensor4DShape in_shape{ internal_get_shape(src) };
Tensor4DShape out_shape{ internal_get_shape(dst) };
Tensor4DShape kernel_shape{ internal_get_shape(weights) };
uint32_t nthreads = NEScheduler::get().num_threads();
// Get configuration arguments for Winograd
winograd_cfg.output_rows = 0;
winograd_cfg.output_cols = 0;
conv_args = std::make_unique<arm_conv::ConvolutionArgs>(
in_shape.n_batches,
arm_conv::Shape2D{ static_cast<uint32_t>(in_shape.n_rows), static_cast<uint32_t>(in_shape.n_cols) },
in_shape.n_channels,
conv_info.pad_top(),
conv_info.pad_left(),
arm_conv::Shape2D{ static_cast<uint32_t>(out_shape.n_rows), static_cast<uint32_t>(out_shape.n_cols) },
out_shape.n_channels,
arm_conv::Shape2D{ static_cast<uint32_t>(kernel_shape.n_rows), static_cast<uint32_t>(kernel_shape.n_cols) },
assembly_utils::map_to_arm_gemm_activation(act_info));
bool success = false;
if(data_type == DataType::F32)
{
success = arm_conv::winograd::get_implementation<float>(
*winograd_impl, &CPUInfo::get(), *conv_args, nthreads, enable_fast_math, &winograd_cfg, nullptr);
}
#if defined(__aarch64__) && defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
else if(data_type == DataType::F16)
{
success = arm_conv::winograd::get_implementation<__fp16>(
*winograd_impl, &CPUInfo::get(), *conv_args, nthreads, enable_fast_math, &winograd_cfg, nullptr);
}
#endif // defined(__aarch64__) && defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
else
{
success = false;
}
return success;
}
inline bool fuse_function_supported(const ActivationLayerInfo &act_info)
{
return act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU || act_info.activation() == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU;
}
} // namespace
CpuWinogradConv2d::CpuWinogradConv2d()
: _gemm_function(std::make_unique<CpuGemm>()),
_activation_func(std::make_unique<CpuActivation>()),
_transform_input_kernel(nullptr),
_transform_output_kernel(nullptr),
_permute_input(std::make_unique<CpuPermute>()),
_permute_output(std::make_unique<CpuPermute>()),
_permute_weights(std::make_unique<CpuPermute>()),
_aux_mem(AuxTensorIdx::Count),
_conv_args{ nullptr },
_winograd_impl{},
_data_layout(),
_winograd_transformed_input{},
_winograd_transformed_output{},
_winograd_transformed_weights{},
_input_workspace(),
_output_workspace(),
_weights_hwio(),
_input_nhwc(),
_output_nhwc(),
_is_prepared{ false },
_run_activation{ false }
{
}
CpuWinogradConv2d::~CpuWinogradConv2d() = default;
void CpuWinogradConv2d::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst,
const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, biases, dst, conv_info));
ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, conv_info, act_info, enable_fast_math);
ARM_COMPUTE_UNUSED(biases);
const DataType data_type = src->data_type();
uint32_t nthreads = NEScheduler::get().num_threads();
_data_layout = src->data_layout();
const Tensor4DShape kernel_shape{ internal_get_shape(weights) };
bool success = get_winograd_kernel_implementation(src, weights, dst, conv_info, act_info, enable_fast_math, &_winograd_impl, _conv_args);
ARM_COMPUTE_EXIT_ON_MSG_VAR(!success, "Unsupported kernel size: %d x %d.\n", kernel_shape.n_rows, kernel_shape.n_cols);
ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using input transform: %s\n", _winograd_impl.input_transform->get_name().c_str());
ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using weight transform: %s\n", _winograd_impl.input_transform->get_name().c_str());
ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using output transform: %s\n", _winograd_impl.input_transform->get_name().c_str());
const bool has_impl = ((_winograd_impl.input_transform != nullptr) && (_winograd_impl.output_transform != nullptr) && (_winograd_impl.gemm_args != nullptr));
if(has_impl)
{
// Determine how much working space is required, allocate it.
const size_t input_workspace_size = _winograd_impl.input_transform->get_working_space_size(*_conv_args, nthreads);
const size_t output_workspace_size = _winograd_impl.output_transform->get_working_space_size(*_conv_args, nthreads);
TensorInfo input_workspace_info(TensorShape(input_workspace_size), 1, DataType::U8);
TensorInfo output_workspace_info(TensorShape(output_workspace_size), 1, DataType::U8);
_input_workspace = input_workspace_info;
_output_workspace = output_workspace_info;
const auto &wds = _winograd_impl.winograd_spec;
// Preparing winograd transformed input tensor
const size_t data_type_size = src->element_size();
const uint32_t m = _winograd_impl.gemm_args->_Msize; // Total number of tiles
const uint32_t k = _winograd_impl.gemm_args->_Ksize; // Input channels
const uint32_t n = _winograd_impl.gemm_args->_Nsize; // Output channels
const uint32_t n_gemms = _winograd_impl.gemm_args->_nmulti;
const uint32_t n_batches = _winograd_impl.gemm_args->_nbatches;
constexpr size_t storage_alignment = 64;
const TensorShape a_shape(k, m, n_batches, n_gemms);
Strides a_strides(data_type_size);
a_strides.set(1, data_type_size * _winograd_impl.winograd_spec.input_ld_row);
a_strides.set(2, data_type_size * _winograd_impl.winograd_spec.input_ld_batch);
a_strides.set(3, data_type_size * _winograd_impl.winograd_spec.input_ld_matrix);
const TensorShape b_shape(n, k, n_gemms);
Strides b_strides(data_type_size);
b_strides.set(1, data_type_size * _winograd_impl.winograd_spec.weight_ld_row);
b_strides.set(2, data_type_size * _winograd_impl.winograd_spec.weight_ld_matrix);
const TensorShape d_shape(n, m, n_batches, n_gemms);
Strides d_strides(data_type_size);
d_strides.set(1, data_type_size * _winograd_impl.winograd_spec.output_ld_row);
d_strides.set(2, data_type_size * _winograd_impl.winograd_spec.output_ld_batch);
d_strides.set(3, data_type_size * _winograd_impl.winograd_spec.output_ld_matrix);
TensorInfo a_info{};
TensorInfo b_info{};
TensorInfo d_info{};
a_info.init(a_shape, 1, data_type, a_strides, 0, wds.input_matrix_size_bytes);
b_info.init(b_shape, 1, data_type, b_strides, 0, wds.weight_matrix_size_bytes);
d_info.init(d_shape, 1, data_type, d_strides, 0, wds.output_matrix_size_bytes);
_winograd_transformed_input = a_info;
_winograd_transformed_weights = b_info;
_winograd_transformed_output = d_info;
PermutationVector weights_permutation_vector(3U, 0U, 1U, 2U);
// Configure the kernel to transform the input tensor from NCHW -> NHWC
if(_data_layout == DataLayout::NCHW)
{
_permute_input->configure(src, &_input_nhwc, PermutationVector(2U, 0U, 1U));
weights_permutation_vector = PermutationVector(3U, 2U, 0U, 1U);
}
// Re-order a weight tensor from [Output feature map x Input feature map x Height x Width] to [Height x Width x Input feature map x Output feature map]
_permute_weights->configure(weights, &_weights_hwio, weights_permutation_vector);
// Reorder the convoluted output to ACL's ordering NCHW
if(_data_layout == DataLayout::NCHW)
{
// configure and allocate dst tensor to be used to convert from winograd domain to spatial domain when calling to reshape_output()
TensorInfo info(TensorShape(dst->dimension(2), dst->dimension(0),
dst->dimension(1), dst->dimension(3)),
1, dst->data_type());
_output_nhwc = info;
_permute_output->configure(&_output_nhwc, dst, PermutationVector(1U, 2U, 0U));
}
// Configure GEMM function
_gemm_function->configure(&_winograd_transformed_input, &_winograd_transformed_weights, nullptr, &_winograd_transformed_output, 1.0f, 0.f);
//Configure Activation Layer
_run_activation = act_info.enabled() && !fuse_function_supported(act_info);
if(_run_activation)
{
_activation_func->configure(dst, nullptr, act_info);
}
auto asm_mem_req = _gemm_function->workspace();
_aux_mem[GemmWorkspace] = asm_mem_req[GemmWorkspace];
_aux_mem[Pretranspose] = asm_mem_req[Pretranspose];
_aux_mem[InterleavedLHS] = asm_mem_req[InterleavedLHS];
_aux_mem[TransposedRHS] = asm_mem_req[TransposedRHS];
_aux_mem[TempResult] = asm_mem_req[TempResult];
// Request temporary memory. Overlap memory needed for Input/Output transformations as they run on different non-overlapping time-steps.
_aux_mem[TransformedInput] = MemoryInfo(offset_int_vec(TransformedInput), MemoryLifetime::Temporary, wds.input_matrix_size_bytes, storage_alignment);
_aux_mem[TransformedOutput] = MemoryInfo(offset_int_vec(TransformedOutput), MemoryLifetime::Temporary, wds.output_matrix_size_bytes, storage_alignment);
_aux_mem[WorkspaceIO] = MemoryInfo(offset_int_vec(WorkspaceIO), MemoryLifetime::Temporary, std::max(input_workspace_size, output_workspace_size));
_aux_mem[PermutedWeights] = MemoryInfo(offset_int_vec(PermutedWeights), MemoryLifetime::Prepare, _weights_hwio.total_size());
_aux_mem[TransformedWeights] = MemoryInfo(offset_int_vec(TransformedWeights), MemoryLifetime::Persistent, wds.weight_matrix_size_bytes, storage_alignment);
if(_data_layout == DataLayout::NCHW)
{
_aux_mem[PermutedInput].merge(offset_int_vec(PermutedInput), src->total_size());
_aux_mem[PermutedOutput].merge(offset_int_vec(PermutedOutput), dst->total_size());
}
}
}
Status CpuWinogradConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info, bool enable_fast_math)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, conv_info));
const Tensor4DShape kernel_shape{ internal_get_shape(weights) };
arm_conv::winograd::WinogradImpl winograd_impl{};
std::unique_ptr<arm_conv::ConvolutionArgs> conv_args;
const bool success = get_winograd_kernel_implementation(src, weights, dst, conv_info, act_info, enable_fast_math, &winograd_impl, conv_args);
ARM_COMPUTE_RETURN_ERROR_ON_MSG_VAR(success == false, "Unsupported kernel size: %d x %d.\n", kernel_shape.n_rows, kernel_shape.n_cols);
ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using input transform: %s\n", winograd_impl.input_transform->get_name().c_str());
ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using weight transform: %s\n", winograd_impl.input_transform->get_name().c_str());
ARM_COMPUTE_LOG_MSG_WITH_FORMAT_ACL(arm_compute::logging::LogLevel::INFO, "Using output transform: %s\n", winograd_impl.input_transform->get_name().c_str());
return Status{};
}
void CpuWinogradConv2d::run(ITensorPack &tensors)
{
prepare(tensors);
auto src = tensors.get_const_tensor(ACL_SRC_0);
auto biases = tensors.get_const_tensor(ACL_SRC_2);
auto output = tensors.get_tensor(ACL_DST);
Window win;
const uint32_t nthreads = NEScheduler::get().num_threads();
// The Winograd transform implementation does fine-grain threading inside the transforms. Just pass thread_id and nthreads.
win.set(Window::DimX, Window::Dimension(0, nthreads, 1));
// Wrap the winograd-domain tensorInfos created in configuration in tensors and allocate the required memory.
CpuAuxTensorHandler input_nhwc(offset_int_vec(PermutedInput), _input_nhwc, tensors, true);
CpuAuxTensorHandler winograd_input_transformed(offset_int_vec(TransformedInput), _winograd_transformed_input, tensors, true);
CpuAuxTensorHandler input_workspace(offset_int_vec(WorkspaceIO), _input_workspace, tensors, true);
const bool is_nchw = _data_layout == DataLayout::NCHW;
if(is_nchw)
{
//Bring channels to the front as Winograd code expects the tensor to be in the format NHWC
ITensorPack pack{ { ACL_SRC, src }, { ACL_DST, input_nhwc.get() } };
_permute_input->run(pack);
}
CpuAuxTensorHandler winograd_output_transformed(offset_int_vec(TransformedOutput), _winograd_transformed_output, tensors, true);
CpuAuxTensorHandler output_workspace(offset_int_vec(WorkspaceIO), _output_workspace, tensors, true);
CpuAuxTensorHandler output_nhwc(offset_int_vec(PermutedOutput), _output_nhwc, tensors, true);
ITensorPack transform_input_pack{ { ACL_SRC, is_nchw ? input_nhwc.get() : src }, { ACL_DST, winograd_input_transformed.get() }, { ACL_INT, input_workspace.get() } };
_transform_input_kernel = std::make_unique<CpuWinogradConv2dTransformInputKernel>(_winograd_impl, *_conv_args, nthreads);
NEScheduler::get().schedule_op(_transform_input_kernel.get(), Window::DimX, win, transform_input_pack);
CpuAuxTensorHandler winograd_weights_transformed(offset_int_vec(TransformedWeights), _winograd_transformed_weights, tensors, true);
// Run 16 GEMMs in multiple threads, each kernel runs one or more GEMMs
ITensorPack gemm_pack = tensors;
gemm_pack.add_const_tensor(ACL_SRC, winograd_input_transformed.get());
gemm_pack.add_const_tensor(ACL_SRC_1, winograd_weights_transformed.get());
gemm_pack.add_const_tensor(ACL_BIAS, nullptr);
gemm_pack.add_tensor(ACL_DST, winograd_output_transformed.get());
_gemm_function->run(gemm_pack);
// Output transform
_transform_output_kernel = std::make_unique<CpuWinogradConv2dTransformOutputKernel>(_winograd_impl, *_conv_args, nthreads);
ITensorPack transform_output_pack{ { ACL_SRC_0, winograd_output_transformed.get() }, { ACL_DST, is_nchw ? output_nhwc.get() : output }, { ACL_SRC_1, biases }, { ACL_INT, output_workspace.get() } };
NEScheduler::get().schedule_op(_transform_output_kernel.get(), Window::DimX, win, transform_output_pack);
if(is_nchw)
{
// Reorder the convoluted output to ACL's ordering NCHW
ITensorPack pack{ { ACL_SRC, output_nhwc.get() }, { ACL_DST, output } };
_permute_output->run(pack);
}
if(_run_activation)
{
ITensorPack pack{ { ACL_SRC, output }, { ACL_DST, output } };
_activation_func->run(pack);
}
}
void CpuWinogradConv2d::prepare(ITensorPack &tensors)
{
if(!_is_prepared)
{
const ITensor *weights = tensors.get_const_tensor(ACL_SRC_1);
ITensor *weights_aux = utils::cast::polymorphic_cast<ITensor *>(tensors.get_tensor(offset_int_vec(PermutedWeights)));
CpuAuxTensorHandler permuted_weights(_weights_hwio, *weights_aux);
ITensorPack permute_tensors{ { ACL_SRC, weights }, { ACL_DST, permuted_weights.get() } };
_permute_weights->run(permute_tensors);
const int element_size_in_bytes = permuted_weights.get()->info()->element_size();
// Weights were in OHWI format, before being permuted "permuted_weights" to be in HWIO format.
const unsigned int height_idx = 3; // H in HWIO
const unsigned int width_idx = 2; // W in HWIO
const unsigned int channel_idx = 1; // I in HWIO
const int permuted_weight_row_stride = permuted_weights.get()->info()->strides_in_bytes()[height_idx] / element_size_in_bytes;
const int permuted_weight_col_stride = permuted_weights.get()->info()->strides_in_bytes()[width_idx] / element_size_in_bytes;
const int permuted_weight_channel_stride = permuted_weights.get()->info()->strides_in_bytes()[channel_idx] / element_size_in_bytes;
// Wrap the winograd-domain transformed weight TensorInfo in Auxiliary tensor and allocate the required memory.
ITensor *weights_transf = utils::cast::polymorphic_cast<ITensor *>(tensors.get_tensor(offset_int_vec(TransformedWeights)));
ARM_COMPUTE_ERROR_ON_NULLPTR(weights_transf);
CpuAuxTensorHandler winograd_transformed_weights(_winograd_transformed_weights, *weights_transf);
const void *permuted_weights_ptr;
void *win_wght_transf_ptr;
permuted_weights_ptr = reinterpret_cast<const void *>(permuted_weights.get()->buffer() + permuted_weights.get()->info()->offset_first_element_in_bytes());
win_wght_transf_ptr = reinterpret_cast<void *>(winograd_transformed_weights.get()->buffer() + winograd_transformed_weights.get()->info()->offset_first_element_in_bytes());
// Prepare Weights
_winograd_impl.weight_transform->execute(
*_conv_args,
permuted_weights_ptr,
permuted_weight_row_stride,
permuted_weight_col_stride,
permuted_weight_channel_stride,
win_wght_transf_ptr,
_winograd_impl.winograd_spec,
0, 1 // Thread 1 of 1
);
ITensorPack gemm_pack = tensors;
gemm_pack.add_const_tensor(ACL_SRC_1, winograd_transformed_weights.get());
_gemm_function->prepare(gemm_pack);
_is_prepared = 1;
}
}
experimental::MemoryRequirements CpuWinogradConv2d::workspace() const
{
return _aux_mem;
}
} // namespace cpu
} // namespace arm_compute