blob: 46e53cec12e694bab8ec0345d5e03c7cbb95bc33 [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEGEMMLowpOffsetContributionOutputStageKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
#include <map>
namespace arm_compute
{
class Coordinates;
namespace
{
inline int32x4x4_t load_results_input(const Iterator &mm_result_it, int32_t x)
{
return
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 12)
}
};
}
inline int32x4x4_t load(const int32_t *ptr, int32_t x)
{
return
{
{
vld1q_s32(ptr + x + 0),
vld1q_s32(ptr + x + 4),
vld1q_s32(ptr + x + 8),
vld1q_s32(ptr + x + 12)
}
};
}
inline int32x4x4_t get_a_offset(const int32_t *vector_sum_col_ptr, int32_t a_offset, int32_t x)
{
int32x4x4_t a_offset_term_s32 = load(vector_sum_col_ptr, x);
a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
return a_offset_term_s32;
}
inline int32x4_t get_b_offset(const int32_t *vector_sum_row_ptr, int32_t b_offset)
{
int32x4_t b_offset_term_s32 = vld1q_dup_s32(vector_sum_row_ptr);
b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, b_offset);
return b_offset_term_s32;
}
inline int32x4x4_t get_k_offset(int32_t k_offset)
{
return
{
{
vdupq_n_s32(k_offset),
vdupq_n_s32(k_offset),
vdupq_n_s32(k_offset),
vdupq_n_s32(k_offset)
}
};
}
template <bool is_bounded_relu>
inline uint8x16_t finalize_quantization_floating_point(int32x4x4_t &in_s32, int32x4_t result_shift_s32, uint8x16_t min_u8, uint8x16_t max_u8)
{
const static int32x4_t zero_s32 = vdupq_n_s32(0);
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
// Saturate negative values
in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
// Convert S32 to S16
const int16x8x2_t in_s16 =
{
{
vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
}
};
// Convert S16 to U8
uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
if(is_bounded_relu)
{
out_u8 = vmaxq_u8(out_u8, min_u8);
out_u8 = vminq_u8(out_u8, max_u8);
}
return out_u8;
}
inline Window get_win_vector_sum(const Window &window)
{
Window win_vector_sum(window);
win_vector_sum.set(Window::DimY, Window::Dimension(0, 0, 0));
win_vector_sum.set(Window::DimZ, Window::Dimension(0, 0, 0));
return win_vector_sum;
}
inline Iterator get_vector_sum_col_it(const Window &window, const ITensor *vector_sum_col)
{
Iterator vector_sum_col_it(vector_sum_col, get_win_vector_sum(window));
return vector_sum_col_it;
}
inline Iterator get_vector_sum_row_it(const Window &window, const ITensor *vector_sum_row)
{
Window win_vector_sum_row = get_win_vector_sum(window);
win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
return vector_sum_row_it;
}
inline Iterator get_bias_it(const Window &window, const ITensor *bias)
{
Window win_bias(window);
win_bias.set(Window::DimY, Window::Dimension(0, 1, 1));
win_bias.set(Window::DimZ, Window::Dimension(0, 1, 1));
Iterator bias_it(bias, win_bias);
return bias_it;
}
inline int32x4x4_t add_s32(int32x4x4_t a, int32x4_t b)
{
return
{
{
vaddq_s32(a.val[0], b),
vaddq_s32(a.val[1], b),
vaddq_s32(a.val[2], b),
vaddq_s32(a.val[3], b)
}
};
}
inline int32x4x4_t add_s32(int32x4x4_t a, int32x4x4_t b)
{
return
{
{
vaddq_s32(a.val[0], b.val[0]),
vaddq_s32(a.val[1], b.val[1]),
vaddq_s32(a.val[2], b.val[2]),
vaddq_s32(a.val[3], b.val[3])
}
};
}
inline int32x4x4_t mul_s32(int32x4x4_t &a, int32_t mul_scalar)
{
return
{
{
vmulq_n_s32(a.val[0], mul_scalar),
vmulq_n_s32(a.val[1], mul_scalar),
vmulq_n_s32(a.val[2], mul_scalar),
vmulq_n_s32(a.val[3], mul_scalar)
}
};
}
template <bool has_a_offset, bool has_b_offset, bool has_bias, bool is_bounded_relu, bool is_fixed_point>
inline void run_offset_contribution_output_stage_window(const int32_t *vector_sum_col_ptr, const int32_t *vector_sum_row_ptr, const int32_t *bias_ptr, Iterator mm_result_it, Iterator out_it,
const int32x4_t result_offset_s32, const int32x4_t result_shift_s32, uint8x16_t min_u8, uint8x16_t max_u8,
int32_t a_offset, int32_t b_offset, int32_t k_offset,
GEMMLowpOutputStageInfo output_stage, int window_step_x, int window_start_x, int window_end_x)
{
int32x4x4_t offset_term_s32 = { 0, 0, 0, 0 };
if(!is_fixed_point)
{
// Combine quantization offset with other offsets.
offset_term_s32 = add_s32(offset_term_s32, result_offset_s32);
}
if(has_a_offset && has_b_offset)
{
offset_term_s32 = add_s32(offset_term_s32, get_k_offset(k_offset));
}
if(has_b_offset)
{
offset_term_s32 = add_s32(offset_term_s32, get_b_offset(vector_sum_row_ptr, b_offset));
}
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
int32x4x4_t in_s32 = load_results_input(mm_result_it, x);
if(has_a_offset)
{
in_s32 = add_s32(in_s32, get_a_offset(vector_sum_col_ptr, a_offset, x));
}
if(has_bias)
{
in_s32 = add_s32(in_s32, load(bias_ptr, x));
}
if(!is_fixed_point || has_b_offset)
{
in_s32 = add_s32(in_s32, offset_term_s32);
}
if(!is_fixed_point)
{
in_s32 = mul_s32(in_s32, output_stage.gemmlowp_multiplier);
}
if(is_fixed_point)
{
vst1q_u8(out_it.ptr() + x, finalize_quantization<is_bounded_relu>(in_s32, output_stage.gemmlowp_multiplier, output_stage.gemmlowp_shift, result_offset_s32, min_u8, max_u8));
}
else
{
vst1q_u8(out_it.ptr() + x, finalize_quantization_floating_point<is_bounded_relu>(in_s32, result_shift_s32, min_u8, max_u8));
}
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
int32_t in_value = *(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x) + wrapper::vgetlane(offset_term_s32.val[0], 0);
if(has_a_offset)
{
in_value += (*(vector_sum_col_ptr + x) * a_offset);
}
if(has_bias)
{
in_value += *(bias_ptr + x);
}
if(is_fixed_point)
{
// Finalize and store the result
*(out_it.ptr() + x) = finalize_quantization<is_bounded_relu>(in_value, output_stage.gemmlowp_multiplier, output_stage.gemmlowp_shift,
output_stage.gemmlowp_offset, static_cast<uint8_t>(output_stage.gemmlowp_min_bound), static_cast<uint8_t>(output_stage.gemmlowp_max_bound));
}
else
{
// Finalize quantization
in_value = (in_value * output_stage.gemmlowp_multiplier) >> output_stage.gemmlowp_shift;
// Bound and store the result
if(is_bounded_relu)
{
in_value = static_cast<uint8_t>(std::max<int32_t>(output_stage.gemmlowp_min_bound, std::min<int32_t>(output_stage.gemmlowp_max_bound, in_value)));
}
*(out_it.ptr() + x) = static_cast<uint8_t>(std::max<int32_t>(0, std::min<int32_t>(255, in_value)));
}
}
}
template <bool is_gemm3d, bool is_bounded_relu, bool is_fixed_point>
void run_offset_contribution_output_stage(const Window &window,
const ITensor *mm_result, const ITensor *vector_sum_col, const ITensor *vector_sum_row, const ITensor *bias, ITensor *output,
int32_t a_offset, int32_t b_offset, int32_t k_offset, bool slide_vector_sum_col,
GEMMLowpOutputStageInfo output_stage)
{
const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
const int32x4_t result_offset_s32 = vdupq_n_s32(output_stage.gemmlowp_offset);
const int32x4_t result_shift_s32 = vdupq_n_s32(is_fixed_point ? output_stage.gemmlowp_shift : -output_stage.gemmlowp_shift);
const uint8x16_t min_u8 = vdupq_n_u8(static_cast<uint8_t>(output_stage.gemmlowp_min_bound));
const uint8x16_t max_u8 = vdupq_n_u8(static_cast<uint8_t>(output_stage.gemmlowp_max_bound));
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Window collapsed_window = win.collapse_if_possible(win, Window::DimZ);
Iterator mm_result_it(mm_result, win);
Iterator out_it(output, win);
if((a_offset != 0) && (b_offset != 0))
{
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
// Offset in case vector_sum_col is batched
const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
if(bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+ id.y() + (id.z() % depth_input) * height_input;
run_offset_contribution_output_stage_window<true, true, true, is_bounded_relu, is_fixed_point>(vector_sum_col_ptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it,
out_it,
result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
output_stage, window_step_x, window_start_x, window_end_x);
},
vector_sum_col_it, vector_sum_row_it, bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+ id.y() + (id.z() % depth_input) * height_input;
run_offset_contribution_output_stage_window<true, true, false, is_bounded_relu, is_fixed_point>(vector_sum_col_ptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it,
result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
output_stage, window_step_x, window_start_x, window_end_x);
},
vector_sum_col_it, vector_sum_row_it, mm_result_it, out_it);
}
}
else if((a_offset == 0) && (b_offset != 0))
{
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
if(bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+ id.y() + (id.z() % depth_input) * height_input;
run_offset_contribution_output_stage_window<false, true, true, is_bounded_relu, is_fixed_point>(nullptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
output_stage, window_step_x, window_start_x, window_end_x);
},
vector_sum_row_it, bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_row_ptr = reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y)
+ id.y() + (id.z() % depth_input) * height_input;
run_offset_contribution_output_stage_window<false, true, false, is_bounded_relu, is_fixed_point>(nullptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it,
result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
output_stage, window_step_x, window_start_x, window_end_x);
},
vector_sum_row_it, mm_result_it, out_it);
}
}
else if((a_offset != 0) && (b_offset == 0))
{
ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
// Offset in case vector_sum_col is batched
const int vector_sum_col_batch_offset = slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
if(bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
run_offset_contribution_output_stage_window<true, false, true, is_bounded_relu, is_fixed_point>(vector_sum_col_ptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
output_stage, window_step_x, window_start_x, window_end_x);
},
vector_sum_col_it, bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(collapsed_window, [&](const Coordinates & id)
{
const int batch_id = id.z() / depth_input;
const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_id * vector_sum_col_batch_offset);
run_offset_contribution_output_stage_window<true, false, false, is_bounded_relu, is_fixed_point>(vector_sum_col_ptr, nullptr, nullptr, mm_result_it, out_it,
result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
output_stage, window_step_x, window_start_x, window_end_x);
},
vector_sum_col_it, mm_result_it, out_it);
}
}
else
{
if(bias != nullptr)
{
Iterator bias_it = get_bias_it(collapsed_window, bias);
execute_window_loop(collapsed_window, [&](const Coordinates &)
{
run_offset_contribution_output_stage_window<false, false, true, is_bounded_relu, is_fixed_point>(nullptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
output_stage, window_step_x, window_start_x, window_end_x);
},
bias_it, mm_result_it, out_it);
}
else
{
execute_window_loop(collapsed_window, [&](const Coordinates &)
{
run_offset_contribution_output_stage_window<false, false, false, is_bounded_relu, is_fixed_point>(nullptr, nullptr, nullptr, mm_result_it, out_it,
result_offset_s32, result_shift_s32, min_u8, max_u8, a_offset, b_offset, k_offset,
output_stage, window_step_x, window_start_x, window_end_x);
},
mm_result_it, out_it);
}
return;
}
}
Status validate_arguments(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col, const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output,
int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_max_bound > 255);
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound < 0 || output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
ARM_COMPUTE_RETURN_ERROR_ON(output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN && output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT);
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != bias->dimension(0));
}
// If a_offset == 0, vector_sum_col can be a nullptr
if(a_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
}
// If b_offset == 0, vector_sum_row can be a nullptr
if(b_offset != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
// Check if input is a 3D reinterpretation
const bool reinterpret_as_3d = mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
// Validate input
ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) != (mm_result->dimension(1) * mm_result->dimension(2)));
ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
TensorShape output_shape = output->tensor_shape();
if(output_shape.num_dimensions() > 1)
{
const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
vector_sum_row_shape.collapse_from(1);
output_shape.collapse_from(output_batch_idx);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
"mm_result tensor must have the same number of batches of output tensor");
if(a_offset != 0)
{
TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
vector_sum_col_shape.collapse_from(1);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 && vector_sum_col_shape[1] != vector_sum_row_shape[1],
"vector_sum_col tensor must have the same number of batches of vector_sum_row_shape or the number of batches must be set to 1");
}
}
}
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mm_result, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *mm_result, ITensorInfo *output)
{
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output, mm_result->clone()->set_data_type(DataType::QASYMM8));
// Configure kernel window
Window win = calculate_max_window(*mm_result, Steps());
// Note: This kernel performs 16 elements per iteration.
// However, since we use a left-over for loop, we cannot have any read or write out of memory
// For this reason num_elems_processed_per_iteration is 1 and so update_window_and_padding() can be skipped
Coordinates coord;
coord.set_num_dimensions(output->num_dimensions());
output->set_valid_region(ValidRegion(coord, output->tensor_shape()));
return std::make_pair(Status{}, win);
}
NEGEMMLowpOffsetContributionOutputStageKernel::NEGEMMLowpOffsetContributionOutputStageFunction
get_configured_function(const ITensor *mm_result, const ITensor *vector_sum_row, GEMMLowpOutputStageInfo output_stage)
{
static std::map<uint8_t, NEGEMMLowpOffsetContributionOutputStageKernel::NEGEMMLowpOffsetContributionOutputStageFunction> map_function =
{
{ 0, &run_offset_contribution_output_stage<false, false, false> },
{ 1, &run_offset_contribution_output_stage<true, false, false> },
{ 2, &run_offset_contribution_output_stage<false, true, false> },
{ 3, &run_offset_contribution_output_stage<true, true, false> },
{ 4, &run_offset_contribution_output_stage<false, false, true> },
{ 5, &run_offset_contribution_output_stage<true, false, true> },
{ 6, &run_offset_contribution_output_stage<false, true, true> },
{ 7, &run_offset_contribution_output_stage<true, true, true> }
};
// Check if input is a 3D reinterpretation
const bool reinterpret_as_3d = vector_sum_row != nullptr
&& mm_result->info()->num_dimensions() > 1
&& mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x();
// Check if we need to clamp the result using min and max
const bool is_bounded_relu = ((output_stage.gemmlowp_min_bound != output_stage.gemmlowp_max_bound)
&& !(output_stage.gemmlowp_min_bound == 0 && output_stage.gemmlowp_max_bound == 255));
const bool is_fixed_point = output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN;
// key acts as a bitset, setting the first bit on reinterpret_as_3d,
// the second on is_bounded_relu, and the third on is_fixed_point.
uint8_t key = (reinterpret_as_3d ? 1UL : 0UL) | ((is_bounded_relu ? 1UL : 0UL) << 1) | ((is_fixed_point ? 1UL : 0UL) << 2);
return map_function.find(key)->second;
}
} // namespace
NEGEMMLowpOffsetContributionOutputStageKernel::NEGEMMLowpOffsetContributionOutputStageKernel()
: _function(nullptr), _vector_sum_col(nullptr), _vector_sum_row(nullptr), _bias(nullptr), _mm_result(nullptr), _output(nullptr), _a_offset(0), _b_offset(0), _k_offset(0), _slide_vector_sum_col(true),
_output_stage(GEMMLowpOutputStageInfo())
{
}
void NEGEMMLowpOffsetContributionOutputStageKernel::configure(const ITensor *mm_result, const ITensor *vector_sum_col,
const ITensor *vector_sum_row, const ITensor *bias, ITensor *output, int32_t k,
int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, output);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result->info(),
vector_sum_col != nullptr ? vector_sum_col->info() : nullptr, // NOLINT
vector_sum_row != nullptr ? vector_sum_row->info() : nullptr, // NOLINT
bias != nullptr ? bias->info() : nullptr, // NOLINT
output->info(), a_offset, b_offset, output_stage)); // NOLINT
_vector_sum_col = vector_sum_col;
_vector_sum_row = vector_sum_row;
_bias = bias;
_mm_result = mm_result;
_output = output;
_a_offset = a_offset;
_b_offset = b_offset;
_k_offset = a_offset * b_offset * k;
_output_stage = output_stage;
// If a_offset == 0, vector_sum_col can be a nullptr
if(a_offset != 0)
{
// Check if vector_sum_col_shape should be slidden or not
// Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
_slide_vector_sum_col = vector_sum_col->info()->tensor_shape().num_dimensions() > 1;
}
// Configure kernel window
auto win_config = validate_and_configure_window(mm_result->info(), output->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
_function = get_configured_function(mm_result, vector_sum_row, output_stage);
}
Status NEGEMMLowpOffsetContributionOutputStageKernel::validate(const ITensorInfo *mm_result, const ITensorInfo *vector_sum_col,
const ITensorInfo *vector_sum_row, const ITensorInfo *bias, const ITensorInfo *output,
int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, output, a_offset, b_offset, output_stage));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(mm_result->clone().get(), output->clone().get()).first);
return Status{};
}
void NEGEMMLowpOffsetContributionOutputStageKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
_function(window, _mm_result, _vector_sum_col, _vector_sum_row, _bias, _output, _a_offset, _b_offset, _k_offset, _slide_vector_sum_col, _output_stage);
}
} // namespace arm_compute