blob: a221bd7925e1aa2ea49d638c6636ab8250b93898 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
#include <cstddef>
#include <cstdint>
using namespace arm_compute;
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON(max > 255);
ARM_COMPUTE_RETURN_ERROR_ON(min < 0 || min > max);
// Check biases if exist
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != bias->dimension(0));
}
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
}
return Status{};
}
std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input, ITensorInfo *bias, ITensorInfo *output)
{
// Note: This kernel performs 16 elements per iteration.
// However, since we use a left-over for loop, we cannot have any read or write out of memory
// For this reason num_elems_processed_per_iteration is set to 1
constexpr unsigned int num_elems_processed_per_iteration = 1;
// Configure kernel window
Window win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration));
AccessWindowHorizontal input_access(input, 0, num_elems_processed_per_iteration);
bool window_changed = update_window_and_padding(win,
input_access);
if(output->total_size() != 0)
{
AccessWindowHorizontal output_result_access(output, 0, num_elems_processed_per_iteration);
window_changed = window_changed || update_window_and_padding(win, output_result_access);
output_result_access.set_valid_region(win, ValidRegion(Coordinates(), output->tensor_shape()));
}
if(bias != nullptr)
{
AccessWindowStatic bias_access(bias, 0, 0, bias->dimension(0), bias->dimension(1));
window_changed = window_changed || update_window_and_padding(win, bias_access);
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, win);
}
inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int)
{
// Add the offset terms to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32);
in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32);
in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32);
in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32);
// Multiply by result_mult_int
in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int);
in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int);
in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int);
in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int);
}
template <bool is_bounded_relu>
inline uint8x16_t finalize_quantization(int32x4x4_t &in_s32, int32x4_t result_shift_s32, uint8x16_t min_u8, uint8x16_t max_u8)
{
const static int32x4_t zero_s32 = vdupq_n_s32(0);
// Shift final result (negative value shift right)
in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
// Saturate negative values
in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
// Convert S32 to S16
const int16x8x2_t in_s16 =
{
{
vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))
}
};
// Convert S16 to U8
uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
if(is_bounded_relu)
{
out_u8 = vmaxq_u8(out_u8, min_u8);
out_u8 = vminq_u8(out_u8, max_u8);
}
return out_u8;
}
} // namespace
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
template <bool is_bounded_relu>
void NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run(const Window &window)
{
const int32x4_t result_offset_s32 = vdupq_n_s32(_result_offset);
const int32x4_t result_shift_s32 = vdupq_n_s32(-_result_shift);
const uint8x16_t min_u8 = vdupq_n_u8(static_cast<uint8_t>(_min));
const uint8x16_t max_u8 = vdupq_n_u8(static_cast<uint8_t>(_max));
ARM_COMPUTE_UNUSED(min_u8);
ARM_COMPUTE_UNUSED(max_u8);
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in(_input, win);
Iterator out(_output, win);
if(_bias != nullptr)
{
Window win_biases;
win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
Iterator bias(_bias, win_biases);
execute_window_loop(win, [&](const Coordinates &)
{
// Compute 16 elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
}
};
const int32x4x4_t bias_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(bias.ptr()) + x + 12)
}
};
// Add the bias to GEMM's result
in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
// Add the offset terms to GEMM's result and multiply by result_mult_int
scale_input(in_s32, result_offset_s32, _result_mult_int);
vst1q_u8(out.ptr() + x, finalize_quantization<is_bounded_relu>(in_s32, result_shift_s32, min_u8, max_u8));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
const int bias_value = *(reinterpret_cast<const int *>(bias.ptr()) + x);
int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
// Quantize
in_value = ((in_value + bias_value + _result_offset) * _result_mult_int) >> _result_shift;
// Finalize and store the result
if(is_bounded_relu)
{
*(out.ptr() + x) = static_cast<uint8_t>(std::max(_min, std::min(_max, in_value)));
}
else
{
*(out.ptr() + x) = static_cast<uint8_t>(std::max(0, std::min(255, in_value)));
}
}
},
in, bias, out);
}
else
{
execute_window_loop(win, [&](const Coordinates &)
{
// Compute 16 elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
int32x4x4_t in_s32 =
{
{
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)
}
};
// Add the offset terms to GEMM's result and multiply by result_mult_int
scale_input(in_s32, result_offset_s32, _result_mult_int);
vst1q_u8(out.ptr() + x, finalize_quantization<is_bounded_relu>(in_s32, result_shift_s32, min_u8, max_u8));
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
// Quantize
in_value = ((in_value + _result_offset) * _result_mult_int) >> _result_shift;
// Finalize and store the result
if(is_bounded_relu)
{
*(out.ptr() + x) = static_cast<uint8_t>(std::max(_min, std::min(_max, in_value)));
}
else
{
*(out.ptr() + x) = static_cast<uint8_t>(std::max(0, std::min(255, in_value)));
}
}
},
in, out);
}
}
NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel()
: _func(nullptr), _input(nullptr), _bias(nullptr), _output(nullptr), _result_offset(0), _result_mult_int(0), _result_shift(0), _min(0), _max(0)
{
}
void NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::configure(const ITensor *input, const ITensor *bias, ITensor *output, int result_offset, int result_mult_int, int result_shift, int min, int max)
{
// Perform validate step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_data_type(DataType::QASYMM8));
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(),
(bias != nullptr) ? bias->info() : nullptr,
output->info(),
min,
max));
_input = input;
_bias = bias;
_output = output;
_result_offset = result_offset;
_result_mult_int = result_mult_int;
_result_shift = result_shift;
_min = min;
_max = max;
// Configure kernel window
auto win_config = validate_and_configure_window(input->info(), (bias != nullptr) ? bias->info() : nullptr, output->info());
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
INEKernel::configure(win_config.second);
// Check if we need to clamp the result using min and max
const bool is_bounded_relu = ((min != max) && !(min == 0 && max == 255));
_func = is_bounded_relu ? &NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run<true> : &NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run<false>;
}
Status NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::validate(const ITensorInfo *input, const ITensorInfo *bias, const ITensorInfo *output, int min, int max)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, bias, output, min, max));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input->clone().get(),
(bias != nullptr) ? bias->clone().get() : nullptr,
output->clone().get())
.first);
return Status{};
}
void NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
(this->*_func)(window);
}