blob: a5aba0bf23dd1477bbbd4d88cc7ccc2b60f46fce [file] [log] [blame]
/*
* Copyright (c) 2016-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/utils/Math.h"
#include "support/ToolchainSupport.h"
#include <cmath>
#include <limits>
namespace arm_compute
{
/** Logarithm polynomial coefficients */
const std::array<float32x4_t, 8> log_tab = {{
vdupq_n_f32(-2.29561495781f),
vdupq_n_f32(-2.47071170807f),
vdupq_n_f32(-5.68692588806f),
vdupq_n_f32(-0.165253549814f),
vdupq_n_f32(5.17591238022f),
vdupq_n_f32(0.844007015228f),
vdupq_n_f32(4.58445882797f),
vdupq_n_f32(0.0141278216615f),
}};
/** Sin polynomial coefficients */
constexpr float te_sin_coeff2 = 0.166666666666f; // 1/(2*3)
constexpr float te_sin_coeff3 = 0.05f; // 1/(4*5)
constexpr float te_sin_coeff4 = 0.023809523810f; // 1/(6*7)
constexpr float te_sin_coeff5 = 0.013888888889f; // 1/(8*9)
#ifndef DOXYGEN_SKIP_THIS
inline float32x4_t prefer_vfmaq_f32(float32x4_t a, float32x4_t b, float32x4_t c)
{
#if __ARM_FEATURE_FMA
return vfmaq_f32(a, b, c);
#else // __ARM_FEATURE_FMA
return vmlaq_f32(a, b, c);
#endif // __ARM_FEATURE_FMA
}
inline float32x4_t vfloorq_f32(float32x4_t val)
{
static const float32x4_t CONST_1 = vdupq_n_f32(1.f);
const int32x4_t z = vcvtq_s32_f32(val);
const float32x4_t r = vcvtq_f32_s32(z);
return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, CONST_1), r);
}
inline float32x4_t vroundq_rte_f32(float32x4_t val)
{
#ifdef __aarch64__
return vrndnq_f32(val);
#else // __aarch64__
static const float32x4_t CONST_HALF_FLOAT = vdupq_n_f32(0.5f);
static const float32x4_t CONST_1_FLOAT = vdupq_n_f32(1.f);
static const int32x4_t CONST_1_INT = vdupq_n_s32(1);
const float32x4_t floor_val = vfloorq_f32(val);
const float32x4_t diff = vsubq_f32(val, floor_val);
const float32x4_t fp32_upper_limit =
vreinterpretq_f32_u32(vdupq_n_u32(0x4B000000)); // 0x4B000000 = (23U + 127U) << 23U
/*
* 1. Select the floor value when (diff<0.5 || (diff==0.5 && floor_val%2==0).
* This condition is checked by vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT) ,vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT) , vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT),CONST_1_INT))))
*
* 2. In case the input value (val) is out of signed int32 range, then simple use the input value as the rounded value
* Because:
* in this case converting to int32 would saturate
* If the input float value is >= 2^23 * 1.00... 23 Zeros ..0 then the rounded value is exactly equal to the input value.
* Because:
* in IEEE single precision floating point representation the fraction part is 23 bit, so if exponent is 23 it means the fraction part = 0 as any digits after decimal point are truncated.
* Hence, rounding has no effect:
* Threshold upper limit with format |S|E(8bits)| Fraction(23bits) | = (23 + 127) << 23 (assuming positive sign): Adding 127, because 127 represents the actual zero in this format.
*/
float32x4_t rounded_val = vbslq_f32(
vorrq_u32(vcltq_f32(diff, CONST_HALF_FLOAT),
vandq_u32(vceqq_f32(diff, CONST_HALF_FLOAT),
vmvnq_u32(vtstq_s32(vandq_s32(vcvtq_s32_f32(floor_val), CONST_1_INT), CONST_1_INT)))),
floor_val, vaddq_f32(floor_val, CONST_1_FLOAT));
float32x4_t result = vbslq_f32(vcgeq_f32(vabsq_f32(val), fp32_upper_limit), val, rounded_val);
return result;
#endif // __aarch64__
}
inline float32x2_t vinvsqrt_f32(float32x2_t x)
{
float32x2_t sqrt_reciprocal = vrsqrte_f32(x);
sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float32x4_t vinvsqrtq_f32(float32x4_t x)
{
float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);
sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float32x2_t vinv_f32(float32x2_t x)
{
float32x2_t recip = vrecpe_f32(x);
recip = vmul_f32(vrecps_f32(x, recip), recip);
recip = vmul_f32(vrecps_f32(x, recip), recip);
return recip;
}
inline float32x4_t vinvq_f32(float32x4_t x)
{
float32x4_t recip = vrecpeq_f32(x);
recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
return recip;
}
inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const std::array<float32x4_t, 8> &coeffs)
{
float32x4_t A = vmlaq_f32(coeffs[0], coeffs[4], x);
float32x4_t B = vmlaq_f32(coeffs[2], coeffs[6], x);
float32x4_t C = vmlaq_f32(coeffs[1], coeffs[5], x);
float32x4_t D = vmlaq_f32(coeffs[3], coeffs[7], x);
float32x4_t x2 = vmulq_f32(x, x);
float32x4_t x4 = vmulq_f32(x2, x2);
float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);
return res;
}
static const uint32_t exp_f32_coeff[] = {
0x3f7ffff6, // x^1: 0x1.ffffecp-1f
0x3efffedb, // x^2: 0x1.fffdb6p-2f
0x3e2aaf33, // x^3: 0x1.555e66p-3f
0x3d2b9f17, // x^4: 0x1.573e2ep-5f
0x3c072010, // x^5: 0x1.0e4020p-7f
};
inline float32x4_t vexpq_f32(float32x4_t x)
{
const auto c1 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[0]));
const auto c2 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[1]));
const auto c3 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[2]));
const auto c4 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[3]));
const auto c5 = vreinterpretq_f32_u32(vdupq_n_u32(exp_f32_coeff[4]));
const auto shift = vreinterpretq_f32_u32(vdupq_n_u32(0x4b00007f)); // 2^23 + 127 = 0x1.0000fep23f
const auto inv_ln2 = vreinterpretq_f32_u32(vdupq_n_u32(0x3fb8aa3b)); // 1 / ln(2) = 0x1.715476p+0f
const auto neg_ln2_hi =
vreinterpretq_f32_u32(vdupq_n_u32(0xbf317200)); // -ln(2) from bits -1 to -19: -0x1.62e400p-1f
const auto neg_ln2_lo =
vreinterpretq_f32_u32(vdupq_n_u32(0xb5bfbe8e)); // -ln(2) from bits -20 to -42: -0x1.7f7d1cp-20f
const auto inf = vdupq_n_f32(std::numeric_limits<float>::infinity());
const auto max_input = vdupq_n_f32(88.37f); // Approximately ln(2^127.5)
const auto zero = vdupq_n_f32(0.f);
const auto min_input = vdupq_n_f32(-86.64f); // Approximately ln(2^-125)
// Range reduction:
// e^x = 2^n * e^r
// where:
// n = floor(x / ln(2))
// r = x - n * ln(2)
//
// By adding x / ln(2) with 2^23 + 127 (shift):
// * As FP32 fraction part only has 23-bits, the addition of 2^23 + 127 forces decimal part
// of x / ln(2) out of the result. The integer part of x / ln(2) (i.e. n) + 127 will occupy
// the whole fraction part of z in FP32 format.
// Subtracting 2^23 + 127 (shift) from z will result in the integer part of x / ln(2)
// (i.e. n) because the decimal part has been pushed out and lost.
// * The addition of 127 makes the FP32 fraction part of z ready to be used as the exponent
// in FP32 format. Left shifting z by 23 bits will result in 2^n.
const auto z = prefer_vfmaq_f32(shift, x, inv_ln2);
const auto n = z - shift;
const auto scale = vreinterpretq_f32_u32(vreinterpretq_u32_f32(z) << 23); // 2^n
// The calculation of n * ln(2) is done using 2 steps to achieve accuracy beyond FP32.
// This outperforms longer Taylor series (3-4 tabs) both in term of accuracy and performance.
const auto r_hi = prefer_vfmaq_f32(x, n, neg_ln2_hi);
const auto r = prefer_vfmaq_f32(r_hi, n, neg_ln2_lo);
// Compute the truncated Taylor series of e^r.
// poly = scale * (1 + c1 * r + c2 * r^2 + c3 * r^3 + c4 * r^4 + c5 * r^5)
const auto r2 = r * r;
const auto p1 = c1 * r;
const auto p23 = prefer_vfmaq_f32(c2, c3, r);
const auto p45 = prefer_vfmaq_f32(c4, c5, r);
const auto p2345 = prefer_vfmaq_f32(p23, p45, r2);
const auto p12345 = prefer_vfmaq_f32(p1, p2345, r2);
auto poly = prefer_vfmaq_f32(scale, p12345, scale);
// Handle underflow and overflow.
poly = vbslq_f32(vcltq_f32(x, min_input), zero, poly);
poly = vbslq_f32(vcgtq_f32(x, max_input), inf, poly);
return poly;
}
#ifdef __aarch64__
inline float32x4_t verfq_f32(float32x4_t x)
{
const float32x4_t max_value = vdupq_n_f32(3.9375); // 4 - 8/128
const float32x4_t shift = vdupq_n_f32(65536); // 2^16
const float32x4_t third = vdupq_n_f32(0.3333333333); // 1/3
const float32x4_t one = vdupq_n_f32(1.f);
const uint32x4_t max_index = vdupq_n_u32(512);
const uint32x4_t sign_mask = vdupq_n_u32(0x7fffffff);
const float32x4_t x_abs = vabsq_f32(x);
// erf(x) for x in [0, 3.9375] is approxiated as follows:
//
// erf(x) = erf(r) + scale(r) * d * (1 - r * d - 1/3 * d^2)
//
// where:
// r = floor(x * 128) / 128
// d = x - r
//
// erf(r) and scale(r) are stored in a 513-entry lookup table.
// The LUT covers the range from 0 to 4 with the step of 1/128.
//
// Special cases:
// erf(x) = 1 for x > 3.9375
// erf(x) = -1 for x < -3.9375
// Find the LUT indices by rounding the input value to the step of 1/128.
//
// `shift` is used to push out the 16 LSBs of the input value. Only 7 bits in the fraction part
// of the input value is preserved.
const float32x4_t z = x_abs + shift;
const float32x4_t r = z - shift;
uint32x4_t index = vreinterpretq_u32_f32(z) - vreinterpretq_u32_f32(shift);
index = vminq_u32(index, max_index);
// Lookup erf(r) and scale(r).
const float64_t entry_0 = *reinterpret_cast<const float64_t *>(&erf_f32_lut[index[0]]);
const float64_t entry_1 = *reinterpret_cast<const float64_t *>(&erf_f32_lut[index[1]]);
const float64_t entry_2 = *reinterpret_cast<const float64_t *>(&erf_f32_lut[index[2]]);
const float64_t entry_3 = *reinterpret_cast<const float64_t *>(&erf_f32_lut[index[3]]);
const float32x4_t entry_01 = vreinterpretq_f32_f64(float64x2_t{entry_0, entry_1});
const float32x4_t entry_23 = vreinterpretq_f32_f64(float64x2_t{entry_2, entry_3});
const float32x4_t erf_r = vuzp1q_f32(entry_01, entry_23);
const float32x4_t scale_r = vuzp2q_f32(entry_01, entry_23);
// Approximate erf(x) = erf(r) + scale(r) * d * (1 - r * d - 1/3 * d^2).
const float32x4_t d = x_abs - r;
const float32x4_t d2 = d * d;
const float32x4_t t0 = vfmaq_f32(r, third, d); // t0 = r + 1/3 * d.
const float32x4_t t1 = vfmsq_f32(d, d2, t0); // t1 = d - d2 * t0 = d * (1 - r * d - 1/3 * d^2).
const float32x4_t erf_x = vfmaq_f32(erf_r, scale_r, t1);
const float32x4_t clamped = vbslq_f32(x_abs > max_value, one, erf_x);
const float32x4_t result = vbslq_f32(sign_mask, clamped, x);
return result;
}
#endif // #ifdef __aarch64__
inline float32x4_t vlogq_f32(float32x4_t x)
{
static const int32x4_t CONST_127 = vdupq_n_s32(127); // 127
static const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)
// Extract exponent
int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), CONST_127);
float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
// Polynomial Approximation
float32x4_t poly = vtaylor_polyq_f32(val, log_tab);
// Reconstruct
poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2);
return poly;
}
inline float32x4_t vtanhq_f32(float32x4_t val)
{
static const float32x4_t CONST_1 = vdupq_n_f32(1.f);
static const float32x4_t CONST_2 = vdupq_n_f32(2.f);
static const float32x4_t CONST_MIN_TANH = vdupq_n_f32(-10.f);
static const float32x4_t CONST_MAX_TANH = vdupq_n_f32(10.f);
static const float32x4_t CONST_THR = vdupq_n_f32(5.e-3);
static const float32x4_t CONST_1_3 = vdupq_n_f32(0.3333333f);
float32x4_t x = vminq_f32(vmaxq_f32(val, CONST_MIN_TANH), CONST_MAX_TANH);
// x * (1 - x^2/3) if |x| < 5.e-3 or (exp2x - 1) / (exp2x + 1) otherwise
float32x4_t exp2x =
vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vexpq_f32(vmulq_f32(CONST_2, x)), vmulq_f32(x, x));
float32x4_t num =
vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vsubq_f32(exp2x, CONST_1), vmulq_f32(CONST_1_3, exp2x));
float32x4_t den = vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vaddq_f32(exp2x, CONST_1), vsubq_f32(CONST_1, num));
float32x4_t tanh = vbslq_f32(vcgtq_f32(vabsq_f32(x), CONST_THR), vmulq_f32(num, vinvq_f32(den)), vmulq_f32(x, den));
return tanh;
}
inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n)
{
return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));
}
inline float32x4_t vsinq_f32(float32x4_t val)
{
const float32x4_t pi_v = vdupq_n_f32(M_PI);
const float32x4_t pio2_v = vdupq_n_f32(M_PI / 2);
const float32x4_t ipi_v = vdupq_n_f32(1 / M_PI);
//Find positive or negative
const int32x4_t c_v = vabsq_s32(vcvtq_s32_f32(vmulq_f32(val, ipi_v)));
const uint32x4_t sign_v = vcleq_f32(val, vdupq_n_f32(0));
const uint32x4_t odd_v = vandq_u32(vreinterpretq_u32_s32(c_v), vdupq_n_u32(1));
uint32x4_t neg_v = veorq_u32(odd_v, sign_v);
//Modulus a - (n * int(a*(1/n)))
float32x4_t ma = vsubq_f32(vabsq_f32(val), vmulq_f32(pi_v, vcvtq_f32_s32(c_v)));
const uint32x4_t reb_v = vcgeq_f32(ma, pio2_v);
//Rebase a between 0 and pi/2
ma = vbslq_f32(reb_v, vsubq_f32(pi_v, ma), ma);
//Taylor series
const float32x4_t ma2 = vmulq_f32(ma, ma);
//2nd elem: x^3 / 3!
float32x4_t elem = vmulq_f32(vmulq_f32(ma, ma2), vdupq_n_f32(te_sin_coeff2));
float32x4_t res = vsubq_f32(ma, elem);
//3rd elem: x^5 / 5!
elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff3));
res = vaddq_f32(res, elem);
//4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val)
elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff4));
res = vsubq_f32(res, elem);
//5th elem: x^9 / 9!
elem = vmulq_f32(vmulq_f32(elem, ma2), vdupq_n_f32(te_sin_coeff5));
res = vaddq_f32(res, elem);
//Change of sign
neg_v = vshlq_n_u32(neg_v, 31);
res = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(res), neg_v));
return res;
}
inline float32x2_t vsin_f32(float32x2_t val)
{
const float32x2_t pi_v = vdup_n_f32(M_PI);
const float32x2_t pio2_v = vdup_n_f32(M_PI / 2);
const float32x2_t ipi_v = vdup_n_f32(1 / M_PI);
//Find positive or negative
const int32x2_t c_v = vabs_s32(vcvt_s32_f32(vmul_f32(val, ipi_v)));
const uint32x2_t sign_v = vcle_f32(val, vdup_n_f32(0));
const uint32x2_t odd_v = vand_u32(vreinterpret_u32_s32(c_v), vdup_n_u32(1));
uint32x2_t neg_v = veor_u32(odd_v, sign_v);
//Modulus a - (n * int(a*(1/n)))
float32x2_t ma = vsub_f32(vabs_f32(val), vmul_f32(pi_v, vcvt_f32_s32(c_v)));
const uint32x2_t reb_v = vcge_f32(ma, pio2_v);
//Rebase a between 0 and pi/2
ma = vbsl_f32(reb_v, vsub_f32(pi_v, ma), ma);
//Taylor series
const float32x2_t ma2 = vmul_f32(ma, ma);
//2nd elem: x^3 / 3!
float32x2_t elem = vmul_f32(vmul_f32(ma, ma2), vdup_n_f32(te_sin_coeff2));
float32x2_t res = vsub_f32(ma, elem);
//3rd elem: x^5 / 5!
elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff3));
res = vadd_f32(res, elem);
//4th elem: x^7 / 7!float32x2_t vsin_f32(float32x2_t val)
elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff4));
res = vsub_f32(res, elem);
//5th elem: x^9 / 9!
elem = vmul_f32(vmul_f32(elem, ma2), vdup_n_f32(te_sin_coeff5));
res = vadd_f32(res, elem);
//Change of sign
neg_v = vshl_n_u32(neg_v, 31);
res = vreinterpret_f32_u32(veor_u32(vreinterpret_u32_f32(res), neg_v));
return res;
}
#endif /* DOXYGEN_SKIP_THIS */
inline int32x4_t rounding_divide_by_pow2(int32x4_t x, int32x4_t exponent)
{
const int32x4_t shift_vec = vnegq_s32(exponent);
const int32x4_t fixup = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
return vrshlq_s32(fixed_up_x, shift_vec);
}
inline int32x4_t rounding_divide_by_pow2(int32x4_t x, int exponent)
{
const int32x4_t shift_vec = vdupq_n_s32(-exponent);
const int32x4_t fixup = vshrq_n_s32(vandq_s32(x, shift_vec), 31);
const int32x4_t fixed_up_x = vqaddq_s32(x, fixup);
return vrshlq_s32(fixed_up_x, shift_vec);
}
inline int32_t rounding_divide_by_pow2(int32_t x, int exponent)
{
const int32_t mask = (1 << exponent) - 1;
const int32_t threshold = (mask >> 1) + (x < 0 ? 1 : 0);
return (x >> exponent) + ((x & mask) > threshold ? 1 : 0);
}
inline float32x4x4_t convert_uint8x16_to_float32x4x4(const uint8x16_t &in)
{
float32x4x4_t out;
const auto tmp1 = vmovl_u8(vget_low_u8(in));
out.val[0] = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp1)));
out.val[1] = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp1)));
const auto tmp2 = vmovl_u8(vget_high_u8(in));
out.val[2] = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp2)));
out.val[3] = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp2)));
return out;
}
inline float32x4x4_t convert_int8x16_to_float32x4x4(const int8x16_t &in)
{
float32x4x4_t out;
const auto tmp1 = vmovl_s8(vget_low_s8(in));
out.val[0] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp1)));
out.val[1] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp1)));
const auto tmp2 = vmovl_s8(vget_high_s8(in));
out.val[2] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp2)));
out.val[3] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp2)));
return out;
}
template <>
inline float32x4x4_t convert_to_float32x4x4(const uint8x16_t &in)
{
return convert_uint8x16_to_float32x4x4(in);
}
template <>
inline float32x4x4_t convert_to_float32x4x4(const int8x16_t &in)
{
return convert_int8x16_to_float32x4x4(in);
}
inline void convert_float32x4x3_to_uint8x8x3(const float32x4x3_t &in1, const float32x4x3_t &in2, uint8x8x3_t &out)
{
out.val[0] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[0])), vqmovn_u32(vcvtq_u32_f32(in2.val[0]))));
out.val[1] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[1])), vqmovn_u32(vcvtq_u32_f32(in2.val[1]))));
out.val[2] = vqmovn_u16(vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in1.val[2])), vqmovn_u32(vcvtq_u32_f32(in2.val[2]))));
}
inline void convert_float32x4x4_to_uint8x16(const float32x4x4_t &in, uint8x16_t &out)
{
const auto low = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[0])), vqmovn_u32(vcvtq_u32_f32(in.val[1])));
const auto high = vcombine_u16(vqmovn_u32(vcvtq_u32_f32(in.val[2])), vqmovn_u32(vcvtq_u32_f32(in.val[3])));
out = vcombine_u8(vqmovn_u16(low), vqmovn_u16(high));
}
inline void convert_float32x4x4_to_int8x16(const float32x4x4_t &in, int8x16_t &out)
{
const auto low = vcombine_s16(vqmovn_s32(vcvtq_s32_f32(in.val[0])), vqmovn_s32(vcvtq_s32_f32(in.val[1])));
const auto high = vcombine_s16(vqmovn_s32(vcvtq_s32_f32(in.val[2])), vqmovn_s32(vcvtq_s32_f32(in.val[3])));
out = vcombine_s8(vqmovn_s16(low), vqmovn_s16(high));
}
template <>
inline uint8x16_t convert_float_to_int<float32x4x4_t, uint8x16_t>(const float32x4x4_t &in)
{
uint8x16_t out;
convert_float32x4x4_to_uint8x16(in, out);
return out;
}
template <>
inline float32x4x4_t convert_int_to_float<float32x4x4_t, uint8x16_t>(const uint8x16_t &in)
{
return convert_uint8x16_to_float32x4x4(in);
}
template <>
inline int8x16_t convert_float_to_int<float32x4x4_t, int8x16_t>(const float32x4x4_t &in)
{
int8x16_t out;
convert_float32x4x4_to_int8x16(in, out);
return out;
}
template <>
inline float32x4x4_t convert_int_to_float<float32x4x4_t, int8x16_t>(const int8x16_t &in)
{
return convert_int8x16_to_float32x4x4(in);
}
inline float vreduce(const float32x4_t &v)
{
const float32x2_t v0 = vget_high_f32(v);
const float32x2_t v1 = vget_low_f32(v);
const float32x2_t v_out = vadd_f32(v0, v1);
const float a = vget_lane_f32(v_out, 0);
const float b = vget_lane_f32(v_out, 1);
return a + b;
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/** Exponent polynomial coefficients */
/** Logarithm polynomial coefficients */
#ifndef DOXYGEN_SKIP_THIS
inline float16x8_t vfloorq_f16(float16x8_t val)
{
static const float16x8_t CONST_1 = vdupq_n_f16(1.f);
const int16x8_t z = vcvtq_s16_f16(val);
const float16x8_t r = vcvtq_f16_s16(z);
return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, CONST_1), r);
}
inline float16x8_t vroundq_rte_f16(float16x8_t val)
{
return vrndnq_f16(val);
}
inline float16x4_t vinvsqrt_f16(float16x4_t x)
{
float16x4_t sqrt_reciprocal = vrsqrte_f16(x);
sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float16x8_t vinvsqrtq_f16(float16x8_t x)
{
float16x8_t sqrt_reciprocal = vrsqrteq_f16(x);
sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
return sqrt_reciprocal;
}
inline float16x4_t vinv_f16(float16x4_t x)
{
float16x4_t recip = vrecpe_f16(x);
recip = vmul_f16(vrecps_f16(x, recip), recip);
recip = vmul_f16(vrecps_f16(x, recip), recip);
return recip;
}
inline float16x8_t vinvq_f16(float16x8_t x)
{
float16x8_t recip = vrecpeq_f16(x);
recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
recip = vmulq_f16(vrecpsq_f16(x, recip), recip);
return recip;
}
inline float16x4_t vtanh_rational_approx_f16(float16x4_t x16)
{
// Calculate rational approximation part of tanh exactly on a half-register of F16 by using F32s
// Note: doesn't handle overflows, needs truncating at |x| = 4.508
const float32x4_t x = vcvt_f32_f16(x16);
const float32x4_t ONE = vdupq_n_f32(1.0f);
const float32x4_t C1 = vdupq_n_f32(0.43760237f);
const float32x4_t C2 = vdupq_n_f32(0.104402f);
const float32x4_t C3 = vdupq_n_f32(0.013442706f);
const float32x4_t C4 = vdupq_n_f32(0.00073561433f);
const float32x4_t x2 = vmulq_f32(x, x);
// Denominator polynomial 1 + C1*x^2 + C3*x^4
float32x4_t denom = vfmaq_f32(C1, C3, x2);
denom = vfmaq_f32(ONE, x2, denom);
// Numerator polynomial x*(1 + C2*x^2 + C4*x^4)
float32x4_t numer = vfmaq_f32(C2, C4, x2);
numer = vfmaq_f32(ONE, x2, numer);
numer = vmulq_f32(numer, x);
return vcvt_f16_f32(vdivq_f32(numer, denom));
}
inline float16x8_t vtanhq_f16(float16x8_t x)
{
// Split into high/low and use rational approximation on both parts exactly
const float16x8_t tanh =
vcombine_f16(vtanh_rational_approx_f16(vget_low_f16(x)), vtanh_rational_approx_f16(vget_high_f16(x)));
// tanh(x) == sign(x) to F16 precision for |x| >= 4.508, use sign after this
const float16x8_t ONE = vdupq_n_f16(1.0f);
const float16x8_t MAX_X = vdupq_n_f16(4.508f);
const auto at_limit = vcageq_f16(x, MAX_X); // |x| >= 4.508
const float16x8_t sign_x = vbslq_f16(vclezq_f16(x), -ONE, ONE);
return vbslq_f16(at_limit, sign_x, tanh);
}
inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const std::array<float16x8_t, 8> &coeffs)
{
const float16x8_t A = vaddq_f16(coeffs[0], vmulq_f16(coeffs[4], x));
const float16x8_t B = vaddq_f16(coeffs[2], vmulq_f16(coeffs[6], x));
const float16x8_t C = vaddq_f16(coeffs[1], vmulq_f16(coeffs[5], x));
const float16x8_t D = vaddq_f16(coeffs[3], vmulq_f16(coeffs[7], x));
const float16x8_t x2 = vmulq_f16(x, x);
const float16x8_t x4 = vmulq_f16(x2, x2);
const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4));
return res;
}
inline float16x8_t vexpq_f16(float16x8_t x)
{
const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
const float16x8_t res = vcombine_f16(vcvt_f16_f32(vexpq_f32(x_low)), vcvt_f16_f32(vexpq_f32(x_high)));
return res;
}
#ifdef __aarch64__
inline float16x8_t verfq_f16(float16x8_t x)
{
const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
const float16x8_t res = vcombine_f16(vcvt_f16_f32(verfq_f32(x_low)), vcvt_f16_f32(verfq_f32(x_high)));
return res;
}
#endif // #ifdef __aarch64__
inline float16x8_t vlogq_f16(float16x8_t x)
{
const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));
const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x));
const float16x8_t res = vcombine_f16(vcvt_f16_f32(vlogq_f32(x_low)), vcvt_f16_f32(vlogq_f32(x_high)));
return res;
}
inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n)
{
float32x4_t n0_f32 = vcvt_f32_f16(vget_low_f16(n));
float32x4_t n1_f32 = vcvt_f32_f16(vget_high_f16(n));
float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val));
float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val));
float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32)));
float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32)));
return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32));
}
inline float16x8_t vsinq_f16(float16x8_t val)
{
const float32x4_t val_high = vcvt_f32_f16(vget_high_f16(val));
const float32x4_t val_low = vcvt_f32_f16(vget_low_f16(val));
const float32x4_t res_high = vsinq_f32(val_high);
const float32x4_t res_low = vsinq_f32(val_low);
return vcombine_f16(vcvt_f16_f32(res_low), vcvt_f16_f32(res_high));
}
inline float16x4_t vsin_f16(float16x4_t val)
{
const float32x4_t val_f32 = vcvt_f32_f16(val);
const float32x2_t val_high = vget_high_f32(val_f32);
const float32x2_t val_low = vget_low_f32(val_f32);
const float32x2_t res_high = vsin_f32(val_high);
const float32x2_t res_low = vsin_f32(val_low);
return vcvt_f16_f32(vcombine_f32(res_low, res_high));
}
inline float16_t vreduce(const float16x8_t &v)
{
const float16x4_t v0 = vget_high_f16(v);
const float16x4_t v1 = vget_low_f16(v);
const float16x4_t v_out = vadd_f16(v0, v1);
const float16_t a = vget_lane_f16(v_out, 0);
const float16_t b = vget_lane_f16(v_out, 1);
const float16_t c = vget_lane_f16(v_out, 2);
const float16_t d = vget_lane_f16(v_out, 3);
return a + b + c + d;
}
#endif /* DOXYGEN_SKIP_THIS */
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
} // namespace arm_compute