blob: 6be628452837d1d424b0528f941fe27c5fe63035 [file] [log] [blame]
/*
* Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NELogicalKernel.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Validate.h"
#include "src/common/utils/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <arm_neon.h>
namespace arm_compute
{
namespace kernels
{
namespace
{
static const uint8x8_t c0_x8 = vdup_n_u8(0);
static const uint8x16_t c0_x16 = vdupq_n_u8(0);
static const uint8x8_t c1_x8 = vdup_n_u8(1);
static const uint8x16_t c1_x16 = vdupq_n_u8(1);
static const uint32_t step = 16;
static const uint32_t half_step = step / 2;
void neon_logical_and(const uint8_t *src0, const uint8_t *src1, uint8_t *dst, uint32_t len)
{
ARM_COMPUTE_ASSERT_NOT_NULLPTR(src0);
ARM_COMPUTE_ASSERT_NOT_NULLPTR(src1);
ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst);
for (; len >= step; len -= step)
{
vst1q_u8(dst, vandq_u8(vminq_u8(vld1q_u8(src0), c1_x16), vminq_u8(vld1q_u8(src1), c1_x16)));
src0 += step;
src1 += step;
dst += step;
}
for (; len >= half_step; len -= half_step)
{
vst1_u8(dst, vand_u8(vmin_u8(vld1_u8(src0), c1_x8), vmin_u8(vld1_u8(src1), c1_x8)));
src0 += half_step;
src1 += half_step;
dst += half_step;
}
for (; len > 0; --len)
{
*dst = (*src0) && (*src1);
++src0;
++src1;
++dst;
}
}
void neon_logical_and_broadcast(const uint8_t *src, uint8_t broadcast_val, uint8_t *dst, uint32_t len)
{
ARM_COMPUTE_ASSERT_NOT_NULLPTR(src);
ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst);
const auto broadcast_val_clamped_s = std::min<uint8_t>(broadcast_val, 1);
const auto broadcast_val_clamped_x16 = vdupq_n_u8(broadcast_val_clamped_s);
const auto broadcast_val_clamped_x8 = vdup_n_u8(broadcast_val_clamped_s);
for (; len >= step; len -= step)
{
vst1q_u8(dst, vandq_u8(vminq_u8(vld1q_u8(src), c1_x16), broadcast_val_clamped_x16));
src += step;
dst += step;
}
for (; len >= half_step; len -= half_step)
{
vst1_u8(dst, vand_u8(vmin_u8(vld1_u8(src), c1_x8), broadcast_val_clamped_x8));
src += half_step;
dst += half_step;
}
for (; len > 0; --len)
{
*dst = (*src) && broadcast_val_clamped_s;
++src;
++dst;
}
}
void neon_logical_or(const uint8_t *src0, const uint8_t *src1, uint8_t *dst, uint32_t len)
{
ARM_COMPUTE_ASSERT_NOT_NULLPTR(src0);
ARM_COMPUTE_ASSERT_NOT_NULLPTR(src1);
ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst);
for (; len >= step; len -= step)
{
vst1q_u8(dst, vorrq_u8(vminq_u8(vld1q_u8(src0), c1_x16), vminq_u8(vld1q_u8(src1), c1_x16)));
src0 += step;
src1 += step;
dst += step;
}
for (; len >= half_step; len -= half_step)
{
vst1_u8(dst, vorr_u8(vmin_u8(vld1_u8(src0), c1_x8), vmin_u8(vld1_u8(src1), c1_x8)));
src0 += half_step;
src1 += half_step;
dst += half_step;
}
for (; len > 0; --len)
{
*dst = (*src0) || (*src1);
++src0;
++src1;
++dst;
}
}
void neon_logical_or_broadcast(const uint8_t *src, uint8_t broadcast_val, uint8_t *dst, uint32_t len)
{
ARM_COMPUTE_ASSERT_NOT_NULLPTR(src);
ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst);
const auto broadcast_val_clamped_s = std::min<uint8_t>(broadcast_val, 1);
const auto broadcast_val_clamped_x16 = vdupq_n_u8(broadcast_val_clamped_s);
const auto broadcast_val_clamped_x8 = vdup_n_u8(broadcast_val_clamped_s);
for (; len >= step; len -= step)
{
vst1q_u8(dst, vorrq_u8(vminq_u8(vld1q_u8(src), c1_x16), broadcast_val_clamped_x16));
src += step;
dst += step;
}
for (; len >= half_step; len -= half_step)
{
vst1_u8(dst, vorr_u8(vmin_u8(vld1_u8(src), c1_x8), broadcast_val_clamped_x8));
src += half_step;
dst += half_step;
}
for (; len > 0; --len)
{
*dst = (*src) || broadcast_val_clamped_s;
++src;
++dst;
}
}
void neon_logical_not(const uint8_t *src, uint8_t *dst, uint32_t len)
{
ARM_COMPUTE_ASSERT_NOT_NULLPTR(src);
ARM_COMPUTE_ASSERT_NOT_NULLPTR(dst);
for (; len >= step; len -= step)
{
vst1q_u8(dst, vbslq_u8(vceqq_u8(vld1q_u8(src), c0_x16), c1_x16, c0_x16));
src += step;
dst += step;
}
for (; len >= half_step; len -= half_step)
{
vst1_u8(dst, vbsl_u8(vceq_u8(vld1_u8(src), c0_x8), c1_x8, c0_x8));
src += half_step;
dst += half_step;
}
for (; len > 0; --len)
{
*dst = !(*src);
++src;
++dst;
}
}
void run_unary(const Window &window, const ITensor *src, ITensor *dst)
{
Window win{window};
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const auto len = window.x().end() - window.x().start();
Iterator in(src, win);
Iterator out(dst, win);
execute_window_loop(
win, [&](const Coordinates &) { neon_logical_not(in.ptr(), out.ptr(), len); }, in, out);
}
void run_binary(const Window &window, const ITensor *src0, const ITensor *src1, ITensor *dst, LogicalOperation op)
{
Window src0_win = window.broadcast_if_dimension_le_one(src0->info()->tensor_shape());
Window src1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
Window win{window};
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const bool is_broadcast_across_x = src0->info()->tensor_shape().x() != src1->info()->tensor_shape().x();
const auto len = window.x().end() - window.x().start();
if (is_broadcast_across_x)
{
using LogicalBroadcastUKernelPtr = std::add_pointer<void(const uint8_t *, uint8_t, uint8_t *, uint32_t)>::type;
LogicalBroadcastUKernelPtr logical_func =
op == LogicalOperation::Or ? &neon_logical_or_broadcast : &neon_logical_and_broadcast;
const bool is_broadcast_input_1 = src1_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_1 ? src1_win : src0_win;
Window non_broadcast_win = !is_broadcast_input_1 ? src1_win : src0_win;
const ITensor *broadcast_tensor = is_broadcast_input_1 ? src1 : src0;
const ITensor *non_broadcast_tensor = !is_broadcast_input_1 ? src1 : src0;
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_in(broadcast_tensor, broadcast_win);
Iterator non_broadcast_in(non_broadcast_tensor, non_broadcast_win);
Iterator out(dst, win);
execute_window_loop(
win,
[&](const Coordinates &)
{
const uint8_t broadcast_value = *broadcast_in.ptr();
logical_func(non_broadcast_in.ptr(), broadcast_value, out.ptr(), len);
},
broadcast_in, non_broadcast_in, out);
}
else
{
using LogicalUKernelPtr = std::add_pointer<void(const uint8_t *, const uint8_t *, uint8_t *, uint32_t)>::type;
LogicalUKernelPtr logical_func = op == LogicalOperation::Or ? &neon_logical_or : &neon_logical_and;
src0_win.set(Window::DimX, Window::Dimension(0, 1, 1));
src1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator in0(src0, src0_win);
Iterator in1(src1, src1_win);
Iterator out(dst, win);
execute_window_loop(
win, [&](const Coordinates &) { logical_func(in0.ptr(), in1.ptr(), out.ptr(), len); }, in0, in1, out);
}
}
} // namespace
const char *NELogicalKernel::name() const
{
return "NELogicalKernel";
}
void NELogicalKernel::configure(const ITensorInfo *input1,
const ITensorInfo *input2,
ITensorInfo *output,
LogicalOperation op)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, output);
ARM_COMPUTE_ERROR_THROW_ON(validate(input1, input2, output, op));
_op = op;
Window win = calculate_max_window(*input1, Steps());
TensorShape out_shape = input1->tensor_shape();
if (op != LogicalOperation::Not)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input2);
out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
win = calculate_max_window(out_shape, Steps());
}
ICPPKernel::configure(win);
// Auto initialize if empty
set_shape_if_empty(*output, out_shape);
set_data_type_if_unknown(*output, input1->data_type());
}
Status NELogicalKernel::validate(const ITensorInfo *input1,
const ITensorInfo *input2,
const ITensorInfo *output,
LogicalOperation op)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8);
ARM_COMPUTE_RETURN_ERROR_ON(op == LogicalOperation::Unknown);
TensorShape out_shape = input1->tensor_shape();
if (op != LogicalOperation::Not)
{
out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
}
// Checks performed when output is configured
if ((output != nullptr) && (output->total_size() != 0))
{
ARM_COMPUTE_RETURN_ERROR_ON(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, output);
}
return Status{};
}
void NELogicalKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(tensors.empty());
const ITensor *src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
const ITensor *src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
ITensor *dst = tensors.get_tensor(TensorType::ACL_DST);
if (_op == LogicalOperation::Not)
{
run_unary(window, src0, dst);
}
else
{
run_binary(window, src0, src1, dst, _op);
}
}
} // namespace kernels
} // namespace arm_compute