blob: 225e4fcfd2a7854202988c92046df1932fc4e5d6 [file] [log] [blame]
/*
* Copyright (c) 2018-2021, 2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NEStackLayerKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/Utils.h"
#include "src/core/helpers/WindowHelpers.h"
namespace arm_compute
{
using namespace arm_compute::misc::shape_calculator;
namespace
{
Status validate_arguments(const ITensorInfo *input,
uint32_t axis,
uint32_t idx_input,
uint32_t num_tensors,
uint32_t rank,
const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
// Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use CPU FP16 instructions.
ARM_COMPUTE_RETURN_ERROR_ON(input->data_type() == DataType::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON(idx_input >= num_tensors);
ARM_COMPUTE_RETURN_ERROR_ON(axis > input->num_dimensions());
ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 4);
ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() != rank);
if (output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(),
compute_stack_shape(*input, axis, num_tensors));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(input, output);
}
return Status{};
}
inline Coordinates
shift_from_axis_and_replace_coordinate(const Coordinates &id, uint32_t axis, uint32_t idx_input, uint32_t num_dims)
{
Coordinates id_out = id;
for (uint32_t i = num_dims; i > axis; --i)
{
id_out.set(i, id[i - 1]);
}
id_out.set(axis, idx_input);
return id_out;
}
void elementwise_stack(const std::vector<ITensor *> &input, ITensor *output, uint32_t axis, const Window &window)
{
Window window_out;
window_out.use_tensor_dimensions(output->info()->tensor_shape());
const int32_t num_tensors = input.size();
const size_t element_size = input[0]->info()->element_size();
const uint32_t num_dims = static_cast<uint32_t>(input[0]->info()->num_dimensions());
for (int32_t idx_input = 0; idx_input < num_tensors; ++idx_input)
{
Iterator input_it(input[idx_input], window);
execute_window_loop(
window,
[&](const Coordinates &id)
{
Coordinates id_out = shift_from_axis_and_replace_coordinate(id, axis, idx_input, num_dims);
std::memcpy(output->ptr_to_element(id_out), input_it.ptr(), element_size);
},
input_it);
}
}
void memcpy_stack(const std::vector<ITensor *> &input, ITensor *output, uint32_t axis, const Window &window)
{
const int32_t element_size = input[0]->info()->element_size();
const int32_t chunk_size = input[0]->info()->tensor_shape().total_size_lower(axis) * element_size;
const int32_t num_tensors = input.size();
const int32_t out_chunk_step = chunk_size * num_tensors;
const int32_t start_x = window.x().start();
const int32_t end_x = window.x().end();
const int32_t start_y = window.y().start();
const int32_t end_y = window.y().end();
uint8_t *out_ptr_base = output->buffer() + output->info()->offset_first_element_in_bytes() + start_x * chunk_size;
for (int32_t x = start_x; x < end_x; ++x)
{
const uint8_t *in_ptr =
input[x]->buffer() + input[x]->info()->offset_first_element_in_bytes() + start_y * chunk_size;
uint8_t *out_ptr = out_ptr_base + start_y * out_chunk_step;
for (int32_t y = start_y; y < end_y; ++y)
{
std::memcpy(out_ptr, in_ptr, chunk_size);
in_ptr += chunk_size;
out_ptr += out_chunk_step;
}
out_ptr_base += chunk_size;
}
}
} // namespace
NEStackLayerKernel::NEStackLayerKernel() : _input(), _output(nullptr), _axis(), _split_dimension(Window::DimY)
{
}
void NEStackLayerKernel::configure(const std::vector<ITensor *> &input, uint32_t axis, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(output);
const int32_t num_tensors = input.size();
ARM_COMPUTE_ERROR_ON(num_tensors == 0);
const uint32_t rank = input[0]->info()->num_dimensions();
ARM_COMPUTE_UNUSED(rank);
for (int32_t i = 0; i < num_tensors; ++i)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input[i]);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input[i]->info(), axis, i, num_tensors, rank, output->info()));
}
auto_init_if_empty(*output->info(), input[0]->info()->clone()->set_tensor_shape(
compute_stack_shape(*input[0]->info(), axis, num_tensors)));
_input = input;
_output = output;
_axis = axis;
}
Status NEStackLayerKernel::validate(const std::vector<ITensorInfo *> &input, uint32_t axis, const ITensorInfo *output)
{
const int32_t num_tensors = input.size();
const size_t rank = input[0]->num_dimensions();
for (int32_t i = 0; i < num_tensors; ++i)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input[i]);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input[i], axis, i, num_tensors, rank, output));
}
return Status{};
}
void NEStackLayerKernel::prepare()
{
// Prepare calculates the window at runtime, in case there is padding being added after configure()
const ITensorInfo *input_info = _input[0]->info();
const int32_t num_dims = input_info->num_dimensions();
const int32_t num_tensors = _input.size();
// Check if there are any paddings in the input tensors
bool has_padding = false;
for (const ITensor *in : _input)
{
if (has_holes(*in->info(), num_dims - 1))
{
has_padding = true;
break;
}
}
has_padding = has_padding || has_holes(*_output->info(), num_dims);
Window win;
if (!has_padding)
{
_stack_fn = memcpy_stack;
// 2D execution window (X,Y): [Num_tensors, Dimensions >= axis]
win.set(Window::DimX, Window::Dimension(0, num_tensors, 1));
win.set(Window::DimY, Window::Dimension(0, input_info->tensor_shape().total_size_upper(_axis), 1));
}
else
{
_stack_fn = elementwise_stack;
win = calculate_max_window(*input_info);
}
INEKernel::configure(win);
}
void NEStackLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
_stack_fn(_input, _output, _axis, window);
}
} // namespace arm_compute