blob: d17128b5ac28a3242b1aaf71118b59d8bf9b0a35 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuDequantizeKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/NESymm.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include <arm_neon.h>
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
Status validate_arguments(const ITensorInfo *src, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::QSYMM8_PER_CHANNEL, DataType::QSYMM8,
DataType::QSYMM16);
if (dst->tensor_shape().total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(dst);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst);
}
return Status{};
}
template <typename T>
inline void store_result(T *ptr, const float32x4x4_t &v)
{
ARM_COMPUTE_UNUSED(ptr, v);
}
template <>
inline void store_result<float>(float *ptr, const float32x4x4_t &v)
{
wrapper::vstore(ptr, v.val[0]);
wrapper::vstore(ptr + 4, v.val[1]);
wrapper::vstore(ptr + 8, v.val[2]);
wrapper::vstore(ptr + 12, v.val[3]);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline void store_result<float16_t>(float16_t *ptr, const float32x4x4_t &v)
{
wrapper::vstore(ptr, vcombine_f16(vcvt_f16_f32(v.val[0]), vcvt_f16_f32(v.val[1])));
wrapper::vstore(ptr + 8, vcombine_f16(vcvt_f16_f32(v.val[2]), vcvt_f16_f32(v.val[3])));
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
template <typename T>
inline void store_result(T *ptr, const float32x4x2_t &v)
{
ARM_COMPUTE_UNUSED(ptr, v);
}
template <>
inline void store_result<float>(float *ptr, const float32x4x2_t &v)
{
wrapper::vstore(ptr, v.val[0]);
wrapper::vstore(ptr + 4, v.val[1]);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline void store_result<float16_t>(float16_t *ptr, const float32x4x2_t &v)
{
wrapper::vstore(ptr, vcombine_f16(vcvt_f16_f32(v.val[0]), vcvt_f16_f32(v.val[1])));
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
template <typename TOut, typename TIn>
void run_dequantization_qasymm8(const ITensor *input, ITensor *output, const Window &window)
{
const UniformQuantizationInfo &qinfo = input->info()->quantization_info().uniform();
const float scale = qinfo.scale;
const int32_t offset = qinfo.offset;
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
// Collapse window and reset first dimension to handle tail calculations manually
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
// Create iterators
Iterator in(input, win_collapsed);
Iterator out(output, win_collapsed);
execute_window_loop(
win_collapsed,
[&](const Coordinates &)
{
const auto in_ptr = reinterpret_cast<const TIn *>(in.ptr());
const auto out_ptr = reinterpret_cast<TOut *>(out.ptr());
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(in_ptr + x);
const auto vdeq = vdequantize(vin, scale, offset);
store_result(reinterpret_cast<TOut *>(out_ptr + x), vdeq);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
auto val = *(in_ptr + x);
*(out_ptr + x) = static_cast<TOut>(Qasymm8QuantizationHelper<TIn>::dequantize(val, qinfo));
}
},
in, out);
}
template <typename T>
void run_dequantization_qsymm8_per_channel_nchw(const ITensor *input, ITensor *output, const Window &window)
{
const auto scale = input->info()->quantization_info().scale();
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
// Reset first dimension to handle tail calculations manually
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
// Create iterators
Iterator in(input, win);
Iterator out(output, win);
execute_window_loop(
win,
[&](const Coordinates &id)
{
const auto in_ptr = reinterpret_cast<const int8_t *>(in.ptr());
const auto out_ptr = reinterpret_cast<T *>(out.ptr());
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(in_ptr + x);
const auto vdeq = vdequantize(vin, scale[id.z()]);
store_result<T>(reinterpret_cast<T *>(out_ptr + x), vdeq);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int8_t val = *(in_ptr + x);
*(out_ptr + x) = static_cast<T>(dequantize(val, scale[id.z()]));
}
},
in, out);
}
template <typename T>
void run_dequantization_qsymm8_per_channel_nhwc(const ITensor *input, ITensor *output, const Window &window)
{
const auto scale = input->info()->quantization_info().scale();
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
// Reset first dimension to handle tail calculations manually
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
// Create iterators
Iterator in(input, win);
Iterator out(output, win);
execute_window_loop(
win,
[&](const Coordinates &)
{
const auto in_ptr = reinterpret_cast<const int8_t *>(in.ptr());
const auto out_ptr = reinterpret_cast<T *>(out.ptr());
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t vscale = {{scale[x + 0], scale[x + 1], scale[x + 2], scale[x + 3], scale[x + 4],
scale[x + 5], scale[x + 6], scale[x + 7], scale[x + 8], scale[x + 9],
scale[x + 10], scale[x + 11], scale[x + 12], scale[x + 13],
scale[x + 14], scale[x + 15]}};
const auto vin = wrapper::vloadq(in_ptr + x);
const auto vdeq = vdequantize(vin, vscale);
store_result<T>(reinterpret_cast<T *>(out_ptr + x), vdeq);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int8_t val = *(in_ptr + x);
*(out_ptr + x) = static_cast<T>(dequantize(val, scale[x]));
}
},
in, out);
}
template <typename T>
void run_dequantization_qsymm8(const ITensor *input, ITensor *output, const Window &window)
{
const UniformQuantizationInfo &qinfo = input->info()->quantization_info().uniform();
const float scale = qinfo.scale;
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
// Collapse window and reset first dimension to handle tail calculations manually
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
// Create iterators
Iterator in(input, win_collapsed);
Iterator out(output, win_collapsed);
execute_window_loop(
win_collapsed,
[&](const Coordinates &)
{
const auto in_ptr = reinterpret_cast<const int8_t *>(in.ptr());
const auto out_ptr = reinterpret_cast<T *>(out.ptr());
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(in_ptr + x);
const auto vdeq = vdequantize(vin, scale);
store_result<T>(reinterpret_cast<T *>(out_ptr + x), vdeq);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int8_t val = *(in_ptr + x);
*(out_ptr + x) = static_cast<T>(dequantize(val, scale));
}
},
in, out);
}
template <typename T>
void run_dequantization_qsymm16(const ITensor *input, ITensor *output, const Window &window)
{
const UniformQuantizationInfo &qinfo = input->info()->quantization_info().uniform();
const float scale = qinfo.scale;
const int window_step_x = 8;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
// Collapse window and reset first dimension to handle tail calculations manually
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
// Create iterators
Iterator in(input, win_collapsed);
Iterator out(output, win_collapsed);
execute_window_loop(
win_collapsed,
[&](const Coordinates &)
{
const auto in_ptr = reinterpret_cast<const int16_t *>(in.ptr());
const auto out_ptr = reinterpret_cast<T *>(out.ptr());
int x = window_start_x;
for (; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(in_ptr + x);
const auto vdeq = vdequantize_int16(vin, scale);
store_result<T>(reinterpret_cast<T *>(out_ptr + x), vdeq);
}
// Compute left-over elements
for (; x < window_end_x; ++x)
{
int16_t val = *(in_ptr + x);
*(out_ptr + x) = static_cast<T>(dequantize_qsymm16(val, scale));
}
},
in, out);
}
template <typename T>
void run_dequantization_core(const ITensor *input, ITensor *output, const Window &window)
{
switch (input->info()->data_type())
{
case DataType::QASYMM8:
run_dequantization_qasymm8<T, uint8_t>(input, output, window);
break;
case DataType::QASYMM8_SIGNED:
run_dequantization_qasymm8<T, int8_t>(input, output, window);
break;
case DataType::QSYMM8_PER_CHANNEL:
input->info()->data_layout() == DataLayout::NHWC
? run_dequantization_qsymm8_per_channel_nhwc<T>(input, output, window)
: run_dequantization_qsymm8_per_channel_nchw<T>(input, output, window);
break;
case DataType::QSYMM8:
run_dequantization_qsymm8<T>(input, output, window);
break;
case DataType::QSYMM16:
run_dequantization_qsymm16<T>(input, output, window);
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type.");
}
}
} // namespace
void CpuDequantizeKernel::configure(const ITensorInfo *src, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, dst));
// Configure kernel window
Window win = calculate_max_window(*src, Steps());
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*dst, src->tensor_shape(), 1, DataType::F32);
ICpuKernel::configure(win);
}
Status CpuDequantizeKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, dst));
return Status{};
}
void CpuDequantizeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
switch (dst->info()->data_type())
{
case DataType::F32:
run_dequantization_core<float>(src, dst, window);
break;
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
run_dequantization_core<float16_t>(src, dst, window);
break;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
default:
ARM_COMPUTE_ERROR("Unsupported data type.");
}
}
const char *CpuDequantizeKernel::name() const
{
return "CpuDequantizeKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute