blob: 57a3f398220176d9d72da17738e30e9f58999904 [file] [log] [blame]
/*
* Copyright (c) 2018-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuElementwiseKernel.h"
#include "arm_compute/core/Helpers.h"
#include "src/core/common/Registrars.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/cpu/kernels/elementwise_binary/list.h"
#include <arm_neon.h>
#if defined(ENABLE_FP32_KERNELS)
namespace
{
static constexpr size_t default_min_max_mws_N1_fp32_neon = 25308;
static constexpr size_t default_min_max_mws_V1_fp32_neon = 34772;
static constexpr size_t default_div_mws_N1_fp32_neon = 19043;
static constexpr size_t default_div_mws_V1_fp32_neon = 25511;
} // namespace
#endif /* ENABLE_FP32_KERNELS */
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
template <ArithmeticOperation op>
const std::vector<CpuElementwiseKernel<CpuArithmeticKernel>::ElementwiseKernel> available_kernels_arithmetic = {
{"sve2_qu8_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::QASYMM8 && data.isa.sve2 && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_QASYMM8_SVE2(sve2_qasymm8_elementwise_binary<op>)},
{"sve2_qs8_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data) {
return data.dt == DataType::QASYMM8_SIGNED && data.isa.sve2 && static_cast<ArithmeticOperation>(data.op) == op;
},
REGISTER_QASYMM8_SIGNED_SVE2(sve2_qasymm8_signed_elementwise_binary<op>)},
{"sve_fp32_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::F32 && data.isa.sve && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_FP32_SVE(sve_fp32_elementwise_binary<op>)},
{"sve_s32_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::S32 && data.isa.sve && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_INTEGER_SVE(sve_s32_elementwise_binary<op>)},
{"sve_s16_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::S16 && data.isa.sve && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_INTEGER_SVE(sve_s16_elementwise_binary<op>)},
{"sve_fp16_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{
return data.dt == DataType::F16 && data.isa.sve && data.isa.fp16 &&
static_cast<ArithmeticOperation>(data.op) == op;
},
REGISTER_FP16_SVE(sve_fp16_elementwise_binary<op>)},
{"neon_fp32_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::F32 && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_FP32_NEON(neon_fp32_elementwise_binary<op>)},
{"neon_s32_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::S32 && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_INTEGER_NEON(neon_s32_elementwise_binary<op>)},
{"neon_fp16_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::F16 && data.isa.fp16 && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_FP16_NEON(neon_fp16_elementwise_binary<op>)},
{"neon_s16_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::S16 && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_INTEGER_NEON(neon_s16_elementwise_binary<op>)},
{"neon_qu8_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::QASYMM8 && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_QASYMM8_NEON(neon_qasymm8_elementwise_binary<op>)},
{"neon_qs8_arithmetic",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::QASYMM8_SIGNED && static_cast<ArithmeticOperation>(data.op) == op; },
REGISTER_QASYMM8_SIGNED_NEON(neon_qasymm8_signed_elementwise_binary<op>)},
};
template <ComparisonOperation op>
const std::vector<CpuElementwiseKernel<CpuComparisonKernel>::ElementwiseKernel> available_kernels_comperison = {
{"sve2_qu8_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::QASYMM8 && data.isa.sve2 && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_QASYMM8_SVE2(sve2_qasymm8_comparison_elementwise_binary<op>)},
{"sve2_qs8_comparison",
[](const ElementwiseDataTypeISASelectorData &data) {
return data.dt == DataType::QASYMM8_SIGNED && data.isa.sve2 && static_cast<ComparisonOperation>(data.op) == op;
},
REGISTER_QASYMM8_SIGNED_SVE2(sve2_qasymm8_signed_comparison_elementwise_binary<op>)},
{"sve_u8_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::U8 && data.isa.sve && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_INTEGER_SVE(sve_u8_comparison_elementwise_binary<op>)},
{"sve_fp32_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::F32 && data.isa.sve && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_FP32_SVE(sve_fp32_comparison_elementwise_binary<op>)},
{"sve_s16_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::S16 && data.isa.sve && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_INTEGER_SVE(sve_s16_comparison_elementwise_binary<op>)},
{"sve_s32_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::S32 && data.isa.sve && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_INTEGER_SVE(sve_s32_comparison_elementwise_binary<op>)},
{"sve_fp16_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{
return data.dt == DataType::F16 && data.isa.sve && data.isa.fp16 &&
static_cast<ComparisonOperation>(data.op) == op;
},
REGISTER_FP16_SVE(sve_fp16_comparison_elementwise_binary<op>)},
{"neon_u8_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::U8 && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_INTEGER_NEON(neon_u8_comparison_elementwise_binary<op>)},
{"neon_fp32_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::F32 && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_FP32_NEON(neon_fp32_comparison_elementwise_binary<op>)},
{"neon_s16_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::S16 && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_INTEGER_NEON(neon_s16_comparison_elementwise_binary<op>)},
{"neon_s32_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::S32 && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_INTEGER_NEON(neon_s32_comparison_elementwise_binary<op>)},
{"neon_qu8_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::QASYMM8 && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_QASYMM8_NEON(neon_qasymm8_comparison_elementwise_binary<op>)},
{"neon_qs8_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::QASYMM8_SIGNED && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_QASYMM8_SIGNED_NEON(neon_qasymm8_signed_comparison_elementwise_binary<op>)},
{"neon_fp16_comparison",
[](const ElementwiseDataTypeISASelectorData &data)
{ return data.dt == DataType::F16 && data.isa.fp16 && static_cast<ComparisonOperation>(data.op) == op; },
REGISTER_FP16_NEON(neon_fp16_comparison_elementwise_binary<op>)},
};
} // namespace
const std::vector<CpuElementwiseKernel<CpuArithmeticKernel>::ElementwiseKernel> &
CpuArithmeticKernel::get_available_kernels()
{
static std::vector<CpuElementwiseKernel<CpuArithmeticKernel>::ElementwiseKernel> available_kernels;
std::move(available_kernels_arithmetic<ArithmeticOperation::ADD>.begin(),
available_kernels_arithmetic<ArithmeticOperation::ADD>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_arithmetic<ArithmeticOperation::SUB>.begin(),
available_kernels_arithmetic<ArithmeticOperation::SUB>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_arithmetic<ArithmeticOperation::DIV>.begin(),
available_kernels_arithmetic<ArithmeticOperation::DIV>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_arithmetic<ArithmeticOperation::MIN>.begin(),
available_kernels_arithmetic<ArithmeticOperation::MIN>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_arithmetic<ArithmeticOperation::MAX>.begin(),
available_kernels_arithmetic<ArithmeticOperation::MAX>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_arithmetic<ArithmeticOperation::SQUARED_DIFF>.begin(),
available_kernels_arithmetic<ArithmeticOperation::SQUARED_DIFF>.end(),
std::back_inserter(available_kernels));
std::move(available_kernels_arithmetic<ArithmeticOperation::POWER>.begin(),
available_kernels_arithmetic<ArithmeticOperation::POWER>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_arithmetic<ArithmeticOperation::PRELU>.begin(),
available_kernels_arithmetic<ArithmeticOperation::PRELU>.end(), std::back_inserter(available_kernels));
return available_kernels;
}
const std::vector<CpuElementwiseKernel<CpuComparisonKernel>::ElementwiseKernel> &
CpuComparisonKernel::get_available_kernels()
{
static std::vector<CpuElementwiseKernel<CpuComparisonKernel>::ElementwiseKernel> available_kernels;
std::move(available_kernels_comperison<ComparisonOperation::Equal>.begin(),
available_kernels_comperison<ComparisonOperation::Equal>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_comperison<ComparisonOperation::NotEqual>.begin(),
available_kernels_comperison<ComparisonOperation::NotEqual>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_comperison<ComparisonOperation::Greater>.begin(),
available_kernels_comperison<ComparisonOperation::Greater>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_comperison<ComparisonOperation::GreaterEqual>.begin(),
available_kernels_comperison<ComparisonOperation::GreaterEqual>.end(),
std::back_inserter(available_kernels));
std::move(available_kernels_comperison<ComparisonOperation::Less>.begin(),
available_kernels_comperison<ComparisonOperation::Less>.end(), std::back_inserter(available_kernels));
std::move(available_kernels_comperison<ComparisonOperation::LessEqual>.begin(),
available_kernels_comperison<ComparisonOperation::LessEqual>.end(),
std::back_inserter(available_kernels));
return available_kernels;
}
template <class Derived>
Status CpuElementwiseKernel<Derived>::validate_arguments_common(const ITensorInfo &src0,
const ITensorInfo &src1,
const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src0);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &src1);
const TensorShape out_shape = TensorShape::broadcast_shape(src0.tensor_shape(), src1.tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
// Validate in case of configured dst
if (dst.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst.tensor_shape(), 0),
"Wrong shape for output");
}
return Status{};
}
void CpuArithmeticKernel::configure_common(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
const auto *uk = CpuArithmeticKernel::get_implementation(
ElementwiseDataTypeISASelectorData{src0->data_type(), CPUInfo::get().get_isa(), static_cast<int>(_op)});
ARM_COMPUTE_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
_run_method = uk->ukernel;
_name = std::string("CpuArithmeticKernel").append("/").append(uk->name);
// If any of shapes is dynamic, expect a configured window and dst at run-time.
if (src0->is_dynamic() || src1->is_dynamic())
{
return;
}
auto shape_and_window = compute_output_shape_and_window(src0->tensor_shape(), src1->tensor_shape());
auto_init_if_empty(*dst, shape_and_window.first, 1, src0->data_type());
ICpuKernel::configure(shape_and_window.second);
}
void CpuComparisonKernel::configure_common(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
const auto *uk = CpuComparisonKernel::get_implementation(
ElementwiseDataTypeISASelectorData{src0->data_type(), CPUInfo::get().get_isa(), static_cast<int>(_op)});
ARM_COMPUTE_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
_run_method = uk->ukernel;
_name = std::string("CpuComparisonKernel").append("/").append(uk->name);
// If any of shapes is dynamic, expect a configured window and dst at run-time.
if (src0->is_dynamic() || src1->is_dynamic())
{
return;
}
auto shape_and_window = compute_output_shape_and_window(src0->tensor_shape(), src1->tensor_shape());
auto_init_if_empty(*dst, shape_and_window.first, 1, src0->data_type());
ICpuKernel::configure(shape_and_window.second);
}
template <class Derived>
void CpuElementwiseKernel<Derived>::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
_run_method(src0, src1, dst, window);
}
template void
CpuElementwiseKernel<CpuArithmeticKernel>::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info);
template void
CpuElementwiseKernel<CpuComparisonKernel>::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info);
template <class Derived>
const char *CpuElementwiseKernel<Derived>::name() const
{
return _name.c_str();
}
template const char *CpuElementwiseKernel<CpuArithmeticKernel>::name() const;
template const char *CpuElementwiseKernel<CpuComparisonKernel>::name() const;
/** Arithmetic operators (min, max, squared_diff) */
void CpuArithmeticKernel::configure(ArithmeticOperation op,
const ITensorInfo *src0,
const ITensorInfo *src1,
ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
_op = op;
CpuArithmeticKernel::configure_common(src0, src1, dst);
}
Status CpuArithmeticKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::S16, DataType::F16, DataType::S32, DataType::F32);
// Validate in case of configured dst
if (dst.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &dst);
}
return validate_arguments_common(src0, src1, dst);
}
Status CpuArithmeticKernel::validate(ArithmeticOperation op,
const ITensorInfo *src0,
const ITensorInfo *src1,
const ITensorInfo *dst)
{
ARM_COMPUTE_UNUSED(op);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
return Status{};
}
size_t CpuArithmeticKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
{
ARM_COMPUTE_UNUSED(thread_count);
#if defined(ENABLE_FP32_KERNELS)
if (this->_run_method == &neon_fp32_elementwise_binary<ArithmeticOperation::MIN> ||
this->_run_method == &neon_fp32_elementwise_binary<ArithmeticOperation::MAX>)
{
size_t mws = ICPPKernel::default_mws;
if (platform.get_cpu_model() == CPUModel::N1)
{
mws = default_min_max_mws_N1_fp32_neon;
}
else if (platform.get_cpu_model() == CPUModel::V1)
{
mws = default_min_max_mws_V1_fp32_neon;
}
else
{
return ICPPKernel::default_mws;
}
// tensor is 1D or was re-interpreted as 1D
if (this->window().shape().num_dimensions() == 1)
{
return mws;
}
else
{
// scale mws down by the number of elements along all the dimensions (x, z, w, etc) except the one
// that we parallelize along (the y dimension). This allows for parallelization when the Y_SIZE is small
// but the other sizes are large, which boosts performance.
mws = static_cast<size_t>(mws / (this->window().num_iterations_total() / this->window().num_iterations(1)));
return std::max(static_cast<size_t>(1), mws);
}
}
#else /* ENABLE_FP32_KERNELS */
ARM_COMPUTE_UNUSED(platform);
#endif /* ENABLE_FP32_KERNELS */
return ICPPKernel::default_mws;
}
/** The division operator */
void CpuDivisionKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
_op = ArithmeticOperation::DIV;
CpuArithmeticKernel::configure_common(src0, src1, dst);
}
size_t CpuDivisionKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
{
ARM_COMPUTE_UNUSED(thread_count);
#if defined(ENABLE_FP32_KERNELS)
if (this->_run_method == &neon_fp32_elementwise_binary<ArithmeticOperation::DIV>)
{
size_t mws = ICPPKernel::default_mws;
if (platform.get_cpu_model() == CPUModel::N1)
{
mws = default_div_mws_N1_fp32_neon;
}
else if (platform.get_cpu_model() == CPUModel::V1)
{
mws = default_div_mws_V1_fp32_neon;
}
else
{
return ICPPKernel::default_mws;
}
// tensor is 1D or was re-interpreted as 1D
if (this->window().shape().num_dimensions() == 1)
{
return mws;
}
else
{
// scale mws down by the number of elements along all the dimensions (x, z, w, etc) except the one
// that we parallelize along (the y dimension). This allows for parallelization when the Y_SIZE is small
// but the other sizes are large, which boosts performance.
mws = static_cast<size_t>(mws / (this->window().num_iterations_total() / this->window().num_iterations(1)));
return std::max(static_cast<size_t>(1), mws);
}
}
#else /* ENABLE_FP32_KERNELS */
ARM_COMPUTE_UNUSED(platform);
#endif /* ENABLE_FP32_KERNELS */
return ICPPKernel::default_mws;
}
Status CpuDivisionKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::S32, DataType::F16, DataType::F32);
return CpuArithmeticKernel::validate_arguments(src0, src1, dst);
}
Status CpuDivisionKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
return Status{};
}
/** The power operator */
void CpuPowerKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
_op = ArithmeticOperation::POWER;
CpuArithmeticKernel::configure_common(src0, src1, dst);
}
Status CpuPowerKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::F16, DataType::F32);
return CpuArithmeticKernel::validate_arguments(src0, src1, dst);
}
Status CpuPowerKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
return Status{};
}
/** Comparison operators (equal, not equal, less than, greater than, less than or equal, greater than or equal) */
void CpuComparisonKernel::configure(ComparisonOperation op,
const ITensorInfo *src0,
const ITensorInfo *src1,
ITensorInfo *dst)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst));
_op = op;
CpuComparisonKernel::configure_common(src0, src1, dst);
}
Status CpuComparisonKernel::validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::U8, DataType::QASYMM8,
DataType::QASYMM8_SIGNED, DataType::S16, DataType::F16,
DataType::S32, DataType::F32);
// Validate in case of configured dst
if (dst.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&dst, 1, DataType::U8);
}
return validate_arguments_common(src0, src1, dst);
}
Status CpuComparisonKernel::validate(ComparisonOperation op,
const ITensorInfo *src0,
const ITensorInfo *src1,
const ITensorInfo *dst)
{
ARM_COMPUTE_UNUSED(op);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst));
return Status{};
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute