blob: a3ed2cd171ee6779c8e0f0c0636d29d49cd7a3b9 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include <arm_neon.h>
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
void inline vector_matrix_multiply_u8(Iterator &ina,
Iterator &inb,
Iterator &out,
int width_a,
int width_b,
int width_out,
size_t stride_b,
const Window &window)
{
execute_window_loop(
window,
[&](const Coordinates &id)
{
if (id.x() > width_b)
{
return;
}
// Note: Since the input are all positives, we can use uint32_t
// Accumulators for the block 0
uint32x4x4_t c0 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
auto vec_a = reinterpret_cast<const uint8_t *>(ina.ptr());
auto matrix_b = reinterpret_cast<const uint8_t *>(inb.ptr());
auto vec_a_end_addr = vec_a + width_a;
// This for loop performs 8 accumulations
for (; vec_a <= (vec_a_end_addr - 8);)
{
const uint8x8_t a00_u8 = vld1_u8(vec_a);
const uint8x16_t b00_u8 = vld1q_u8(matrix_b + 0 * stride_b);
const uint8x16_t b10_u8 = vld1q_u8(matrix_b + 1 * stride_b);
const uint8x16_t b20_u8 = vld1q_u8(matrix_b + 2 * stride_b);
const uint8x16_t b30_u8 = vld1q_u8(matrix_b + 3 * stride_b);
const uint8x16_t b40_u8 = vld1q_u8(matrix_b + 4 * stride_b);
const uint8x16_t b50_u8 = vld1q_u8(matrix_b + 5 * stride_b);
const uint8x16_t b60_u8 = vld1q_u8(matrix_b + 6 * stride_b);
const uint8x16_t b70_u8 = vld1q_u8(matrix_b + 7 * stride_b);
// Convert a00_u8 to uint16_t and get the lower part
const uint16x4x2_t a00_u16 = {{vget_low_u16(vmovl_u8(a00_u8)), vget_high_u16(vmovl_u8(a00_u8))}};
const uint16x4x4_t b00_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))}};
const uint16x4x4_t b10_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b10_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b10_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b10_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b10_u8)))}};
const uint16x4x4_t b20_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b20_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b20_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b20_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b20_u8)))}};
const uint16x4x4_t b30_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b30_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b30_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b30_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b30_u8)))}};
const uint16x4x4_t b40_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b40_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b40_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b40_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b40_u8)))}};
const uint16x4x4_t b50_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b50_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b50_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b50_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b50_u8)))}};
const uint16x4x4_t b60_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b60_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b60_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b60_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b60_u8)))}};
const uint16x4x4_t b70_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b70_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b70_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b70_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b70_u8)))}};
// Accumulate 0:
c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16.val[0], 0);
c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16.val[0], 0);
c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16.val[0], 0);
c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16.val[0], 0);
// Accumulate 1:
c0.val[0] = vmlal_lane_u16(c0.val[0], b10_u16.val[0], a00_u16.val[0], 1);
c0.val[1] = vmlal_lane_u16(c0.val[1], b10_u16.val[1], a00_u16.val[0], 1);
c0.val[2] = vmlal_lane_u16(c0.val[2], b10_u16.val[2], a00_u16.val[0], 1);
c0.val[3] = vmlal_lane_u16(c0.val[3], b10_u16.val[3], a00_u16.val[0], 1);
// Accumulate 2:
c0.val[0] = vmlal_lane_u16(c0.val[0], b20_u16.val[0], a00_u16.val[0], 2);
c0.val[1] = vmlal_lane_u16(c0.val[1], b20_u16.val[1], a00_u16.val[0], 2);
c0.val[2] = vmlal_lane_u16(c0.val[2], b20_u16.val[2], a00_u16.val[0], 2);
c0.val[3] = vmlal_lane_u16(c0.val[3], b20_u16.val[3], a00_u16.val[0], 2);
// Accumulate 3:
c0.val[0] = vmlal_lane_u16(c0.val[0], b30_u16.val[0], a00_u16.val[0], 3);
c0.val[1] = vmlal_lane_u16(c0.val[1], b30_u16.val[1], a00_u16.val[0], 3);
c0.val[2] = vmlal_lane_u16(c0.val[2], b30_u16.val[2], a00_u16.val[0], 3);
c0.val[3] = vmlal_lane_u16(c0.val[3], b30_u16.val[3], a00_u16.val[0], 3);
// Accumulate 4:
c0.val[0] = vmlal_lane_u16(c0.val[0], b40_u16.val[0], a00_u16.val[1], 0);
c0.val[1] = vmlal_lane_u16(c0.val[1], b40_u16.val[1], a00_u16.val[1], 0);
c0.val[2] = vmlal_lane_u16(c0.val[2], b40_u16.val[2], a00_u16.val[1], 0);
c0.val[3] = vmlal_lane_u16(c0.val[3], b40_u16.val[3], a00_u16.val[1], 0);
// Accumulate 5:
c0.val[0] = vmlal_lane_u16(c0.val[0], b50_u16.val[0], a00_u16.val[1], 1);
c0.val[1] = vmlal_lane_u16(c0.val[1], b50_u16.val[1], a00_u16.val[1], 1);
c0.val[2] = vmlal_lane_u16(c0.val[2], b50_u16.val[2], a00_u16.val[1], 1);
c0.val[3] = vmlal_lane_u16(c0.val[3], b50_u16.val[3], a00_u16.val[1], 1);
// Accumulate 6:
c0.val[0] = vmlal_lane_u16(c0.val[0], b60_u16.val[0], a00_u16.val[1], 2);
c0.val[1] = vmlal_lane_u16(c0.val[1], b60_u16.val[1], a00_u16.val[1], 2);
c0.val[2] = vmlal_lane_u16(c0.val[2], b60_u16.val[2], a00_u16.val[1], 2);
c0.val[3] = vmlal_lane_u16(c0.val[3], b60_u16.val[3], a00_u16.val[1], 2);
// Accumulate 7:
c0.val[0] = vmlal_lane_u16(c0.val[0], b70_u16.val[0], a00_u16.val[1], 3);
c0.val[1] = vmlal_lane_u16(c0.val[1], b70_u16.val[1], a00_u16.val[1], 3);
c0.val[2] = vmlal_lane_u16(c0.val[2], b70_u16.val[2], a00_u16.val[1], 3);
c0.val[3] = vmlal_lane_u16(c0.val[3], b70_u16.val[3], a00_u16.val[1], 3);
vec_a += 8;
matrix_b += 8 * stride_b;
}
// This for loop performs the left-over accumulations
for (; vec_a < vec_a_end_addr;)
{
const uint8x8_t a00_u8 = vld1_dup_u8(vec_a);
const uint8x16_t b00_u8 = vld1q_u8(matrix_b);
const uint16x4x4_t b00_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))}};
// Convert a00_u8 to uint16_t and get the lower part
const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
// Accumulate 0:
c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
vec_a += 1;
matrix_b += stride_b;
}
auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
if (id.x() < (width_out - 16))
{
vst1q_s32(vec_out + 0, vreinterpretq_s32_u32(c0.val[0]));
vst1q_s32(vec_out + 4, vreinterpretq_s32_u32(c0.val[1]));
vst1q_s32(vec_out + 8, vreinterpretq_s32_u32(c0.val[2]));
vst1q_s32(vec_out + 12, vreinterpretq_s32_u32(c0.val[3]));
}
else
{
auto left_over = width_out - id.x();
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(vec_out + k * 4 + j) = c0.val[k][j];
}
}
}
},
ina, inb, out);
}
void inline vector_matrix_multiply_s8(Iterator &ina,
Iterator &inb,
Iterator &out,
int width_a,
int width_b,
int width_out,
size_t stride_b,
const Window &window)
{
execute_window_loop(
window,
[&](const Coordinates &id)
{
if (id.x() > width_b)
{
return;
}
// Accumulators for the block 0
int32x4x4_t c0 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
auto vec_a = reinterpret_cast<const int8_t *>(ina.ptr());
auto matrix_b = reinterpret_cast<const int8_t *>(inb.ptr());
auto vec_a_end_addr = vec_a + width_a;
// This for loop performs 8 accumulations
for (; vec_a <= (vec_a_end_addr - 8);)
{
const int8x8_t a00_s8 = vld1_s8(vec_a);
const int8x16_t b00_s8 = vld1q_s8(matrix_b + 0 * stride_b);
const int8x16_t b10_s8 = vld1q_s8(matrix_b + 1 * stride_b);
const int8x16_t b20_s8 = vld1q_s8(matrix_b + 2 * stride_b);
const int8x16_t b30_s8 = vld1q_s8(matrix_b + 3 * stride_b);
const int8x16_t b40_s8 = vld1q_s8(matrix_b + 4 * stride_b);
const int8x16_t b50_s8 = vld1q_s8(matrix_b + 5 * stride_b);
const int8x16_t b60_s8 = vld1q_s8(matrix_b + 6 * stride_b);
const int8x16_t b70_s8 = vld1q_s8(matrix_b + 7 * stride_b);
// Convert a00_s8 to int16_t and get the lower part
const int16x4x2_t a00_s16 = {{vget_low_s16(vmovl_s8(a00_s8)), vget_high_s16(vmovl_s8(a00_s8))}};
const int16x4x4_t b00_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))}};
const int16x4x4_t b10_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b10_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b10_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b10_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b10_s8)))}};
const int16x4x4_t b20_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b20_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b20_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b20_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b20_s8)))}};
const int16x4x4_t b30_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b30_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b30_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b30_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b30_s8)))}};
const int16x4x4_t b40_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b40_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b40_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b40_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b40_s8)))}};
const int16x4x4_t b50_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b50_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b50_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b50_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b50_s8)))}};
const int16x4x4_t b60_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b60_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b60_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b60_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b60_s8)))}};
const int16x4x4_t b70_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b70_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b70_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b70_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b70_s8)))}};
// Accumulate 0:
c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16.val[0], 0);
c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16.val[0], 0);
c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16.val[0], 0);
c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16.val[0], 0);
// Accumulate 1:
c0.val[0] = vmlal_lane_s16(c0.val[0], b10_s16.val[0], a00_s16.val[0], 1);
c0.val[1] = vmlal_lane_s16(c0.val[1], b10_s16.val[1], a00_s16.val[0], 1);
c0.val[2] = vmlal_lane_s16(c0.val[2], b10_s16.val[2], a00_s16.val[0], 1);
c0.val[3] = vmlal_lane_s16(c0.val[3], b10_s16.val[3], a00_s16.val[0], 1);
// Accumulate 2:
c0.val[0] = vmlal_lane_s16(c0.val[0], b20_s16.val[0], a00_s16.val[0], 2);
c0.val[1] = vmlal_lane_s16(c0.val[1], b20_s16.val[1], a00_s16.val[0], 2);
c0.val[2] = vmlal_lane_s16(c0.val[2], b20_s16.val[2], a00_s16.val[0], 2);
c0.val[3] = vmlal_lane_s16(c0.val[3], b20_s16.val[3], a00_s16.val[0], 2);
// Accumulate 3:
c0.val[0] = vmlal_lane_s16(c0.val[0], b30_s16.val[0], a00_s16.val[0], 3);
c0.val[1] = vmlal_lane_s16(c0.val[1], b30_s16.val[1], a00_s16.val[0], 3);
c0.val[2] = vmlal_lane_s16(c0.val[2], b30_s16.val[2], a00_s16.val[0], 3);
c0.val[3] = vmlal_lane_s16(c0.val[3], b30_s16.val[3], a00_s16.val[0], 3);
// Accumulate 4:
c0.val[0] = vmlal_lane_s16(c0.val[0], b40_s16.val[0], a00_s16.val[1], 0);
c0.val[1] = vmlal_lane_s16(c0.val[1], b40_s16.val[1], a00_s16.val[1], 0);
c0.val[2] = vmlal_lane_s16(c0.val[2], b40_s16.val[2], a00_s16.val[1], 0);
c0.val[3] = vmlal_lane_s16(c0.val[3], b40_s16.val[3], a00_s16.val[1], 0);
// Accumulate 5:
c0.val[0] = vmlal_lane_s16(c0.val[0], b50_s16.val[0], a00_s16.val[1], 1);
c0.val[1] = vmlal_lane_s16(c0.val[1], b50_s16.val[1], a00_s16.val[1], 1);
c0.val[2] = vmlal_lane_s16(c0.val[2], b50_s16.val[2], a00_s16.val[1], 1);
c0.val[3] = vmlal_lane_s16(c0.val[3], b50_s16.val[3], a00_s16.val[1], 1);
// Accumulate 6:
c0.val[0] = vmlal_lane_s16(c0.val[0], b60_s16.val[0], a00_s16.val[1], 2);
c0.val[1] = vmlal_lane_s16(c0.val[1], b60_s16.val[1], a00_s16.val[1], 2);
c0.val[2] = vmlal_lane_s16(c0.val[2], b60_s16.val[2], a00_s16.val[1], 2);
c0.val[3] = vmlal_lane_s16(c0.val[3], b60_s16.val[3], a00_s16.val[1], 2);
// Accumulate 7:
c0.val[0] = vmlal_lane_s16(c0.val[0], b70_s16.val[0], a00_s16.val[1], 3);
c0.val[1] = vmlal_lane_s16(c0.val[1], b70_s16.val[1], a00_s16.val[1], 3);
c0.val[2] = vmlal_lane_s16(c0.val[2], b70_s16.val[2], a00_s16.val[1], 3);
c0.val[3] = vmlal_lane_s16(c0.val[3], b70_s16.val[3], a00_s16.val[1], 3);
vec_a += 8;
matrix_b += 8 * stride_b;
}
// This for loop performs the left-over accumulations
for (; vec_a < vec_a_end_addr;)
{
const int8x8_t a00_s8 = vld1_dup_s8(vec_a);
const int8x16_t b00_s8 = vld1q_s8(matrix_b);
const int16x4x4_t b00_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))}};
// Convert a00_s8 to uint16_t and get the lower part
const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
// Accumulate 0:
c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
vec_a += 1;
matrix_b += stride_b;
}
auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
if (id.x() < (width_out - 16))
{
vst1q_s32(vec_out + 0, c0.val[0]);
vst1q_s32(vec_out + 4, c0.val[1]);
vst1q_s32(vec_out + 8, c0.val[2]);
vst1q_s32(vec_out + 12, c0.val[3]);
}
else
{
auto left_over = width_out - id.x();
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(vec_out + k * 4 + j) = c0.val[k][j];
}
}
}
},
ina, inb, out);
}
void inline matrix_multiply_u8(
Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
{
const auto width_out = static_cast<int>(out_info.dimension(0));
const auto height_out = static_cast<int>(out_info.dimension(1));
const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
execute_window_loop(
window,
[&](const Coordinates &id)
{
const uint8_t *mtx_a0 = ina.ptr();
const uint8_t *mtx_b0 = inb.ptr();
// Note: Since the input are all positives, we can use uint32_t
// Accumulators for the block 0
uint32x4x4_t c0 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
// Accumulators for the block 1
uint32x4x4_t c1 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
// Accumulators for the block 2
uint32x4x4_t c2 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
// Accumulators for the block 3
uint32x4x4_t c3 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
for (int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
{
const uint8x8_t a00_u8 = vld1_u8(mtx_a0);
const uint8x16_t b00_u8 = vld1q_u8(mtx_b0);
// Convert a00_u8 to uint16_t and get the lower part
const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
// Convert b00_s8 to uint16_t
const uint16x4x4_t b00_u16 = {
{vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))}};
// 4x4 block 0
c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
// 4x4 block 1
c1.val[0] = vmlal_lane_u16(c1.val[0], b00_u16.val[0], a00_u16, 1);
c1.val[1] = vmlal_lane_u16(c1.val[1], b00_u16.val[1], a00_u16, 1);
c1.val[2] = vmlal_lane_u16(c1.val[2], b00_u16.val[2], a00_u16, 1);
c1.val[3] = vmlal_lane_u16(c1.val[3], b00_u16.val[3], a00_u16, 1);
// 4x4 block 2
c2.val[0] = vmlal_lane_u16(c2.val[0], b00_u16.val[0], a00_u16, 2);
c2.val[1] = vmlal_lane_u16(c2.val[1], b00_u16.val[1], a00_u16, 2);
c2.val[2] = vmlal_lane_u16(c2.val[2], b00_u16.val[2], a00_u16, 2);
c2.val[3] = vmlal_lane_u16(c2.val[3], b00_u16.val[3], a00_u16, 2);
// 4x4 block 3
c3.val[0] = vmlal_lane_u16(c3.val[0], b00_u16.val[0], a00_u16, 3);
c3.val[1] = vmlal_lane_u16(c3.val[1], b00_u16.val[1], a00_u16, 3);
c3.val[2] = vmlal_lane_u16(c3.val[2], b00_u16.val[2], a00_u16, 3);
c3.val[3] = vmlal_lane_u16(c3.val[3], b00_u16.val[3], a00_u16, 3);
}
auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
if (id.y() < height_out && id.x() < (width_out - 16))
{
vst1q_s32(mtx_out + 0 * out_stride + 0, vreinterpretq_s32_u32(c0.val[0]));
vst1q_s32(mtx_out + 0 * out_stride + 4, vreinterpretq_s32_u32(c0.val[1]));
vst1q_s32(mtx_out + 0 * out_stride + 8, vreinterpretq_s32_u32(c0.val[2]));
vst1q_s32(mtx_out + 0 * out_stride + 12, vreinterpretq_s32_u32(c0.val[3]));
if (id.y() + 1 < height_out)
{
vst1q_s32(mtx_out + 1 * out_stride + 0, vreinterpretq_s32_u32(c1.val[0]));
vst1q_s32(mtx_out + 1 * out_stride + 4, vreinterpretq_s32_u32(c1.val[1]));
vst1q_s32(mtx_out + 1 * out_stride + 8, vreinterpretq_s32_u32(c1.val[2]));
vst1q_s32(mtx_out + 1 * out_stride + 12, vreinterpretq_s32_u32(c1.val[3]));
if (id.y() + 2 < height_out)
{
vst1q_s32(mtx_out + 2 * out_stride + 0, vreinterpretq_s32_u32(c2.val[0]));
vst1q_s32(mtx_out + 2 * out_stride + 4, vreinterpretq_s32_u32(c2.val[1]));
vst1q_s32(mtx_out + 2 * out_stride + 8, vreinterpretq_s32_u32(c2.val[2]));
vst1q_s32(mtx_out + 2 * out_stride + 12, vreinterpretq_s32_u32(c2.val[3]));
if (id.y() + 3 < height_out)
{
vst1q_s32(mtx_out + 3 * out_stride + 0, vreinterpretq_s32_u32(c3.val[0]));
vst1q_s32(mtx_out + 3 * out_stride + 4, vreinterpretq_s32_u32(c3.val[1]));
vst1q_s32(mtx_out + 3 * out_stride + 8, vreinterpretq_s32_u32(c3.val[2]));
vst1q_s32(mtx_out + 3 * out_stride + 12, vreinterpretq_s32_u32(c3.val[3]));
}
}
}
}
else
{
const auto left_over_value = width_out - id.x();
auto left_over = left_over_value;
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(mtx_out + k * 4 + j) = c0.val[k][j];
}
}
if (id.y() + 1 < height_out)
{
left_over = left_over_value;
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
}
}
if (id.y() + 2 < height_out)
{
left_over = left_over_value;
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
}
}
if (id.y() + 3 < height_out)
{
left_over = left_over_value;
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
}
}
}
}
}
}
},
ina, inb, out);
}
void inline matrix_multiply_s8(
Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
{
const auto width_out = static_cast<int>(out_info.dimension(0));
const auto height_out = static_cast<int>(out_info.dimension(1));
const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
// The implementation assumes that the matrix A and Matrix B have been reshaped respectively with CpuGemmInterleave4x4 and CpuGemmTranspose1xW
// The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration
// All the values needed for computing a single 4x4 block will be read from consecutive memory positions
execute_window_loop(
window,
[&](const Coordinates &id)
{
auto *mtx_a0 = reinterpret_cast<const int8_t *>(ina.ptr());
auto *mtx_b0 = reinterpret_cast<const int8_t *>(inb.ptr());
// Note: Since the input are all positives, we can use uint32_t
// Accumulators for the block 0
int32x4x4_t c0 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
// Accumulators for the block 1
int32x4x4_t c1 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
// Accumulators for the block 2
int32x4x4_t c2 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
// Accumulators for the block 3
int32x4x4_t c3 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
for (int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
{
const int8x8_t a00_s8 = vld1_s8(mtx_a0);
const int8x16_t b00_s8 = vld1q_s8(mtx_b0);
// Convert a00_s8 to uint16_t and get the lower part
const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
// Convert b00_s8 to int16_t
const int16x4x4_t b00_s16 = {
{vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))}};
// 4x4 block 0
c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
// 4x4 block 1
c1.val[0] = vmlal_lane_s16(c1.val[0], b00_s16.val[0], a00_s16, 1);
c1.val[1] = vmlal_lane_s16(c1.val[1], b00_s16.val[1], a00_s16, 1);
c1.val[2] = vmlal_lane_s16(c1.val[2], b00_s16.val[2], a00_s16, 1);
c1.val[3] = vmlal_lane_s16(c1.val[3], b00_s16.val[3], a00_s16, 1);
// 4x4 block 2
c2.val[0] = vmlal_lane_s16(c2.val[0], b00_s16.val[0], a00_s16, 2);
c2.val[1] = vmlal_lane_s16(c2.val[1], b00_s16.val[1], a00_s16, 2);
c2.val[2] = vmlal_lane_s16(c2.val[2], b00_s16.val[2], a00_s16, 2);
c2.val[3] = vmlal_lane_s16(c2.val[3], b00_s16.val[3], a00_s16, 2);
// 4x4 block 3
c3.val[0] = vmlal_lane_s16(c3.val[0], b00_s16.val[0], a00_s16, 3);
c3.val[1] = vmlal_lane_s16(c3.val[1], b00_s16.val[1], a00_s16, 3);
c3.val[2] = vmlal_lane_s16(c3.val[2], b00_s16.val[2], a00_s16, 3);
c3.val[3] = vmlal_lane_s16(c3.val[3], b00_s16.val[3], a00_s16, 3);
}
auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
if (id.y() < height_out && id.x() < (width_out - 16))
{
vst1q_s32(mtx_out + 0 * out_stride + 0, c0.val[0]);
vst1q_s32(mtx_out + 0 * out_stride + 4, c0.val[1]);
vst1q_s32(mtx_out + 0 * out_stride + 8, c0.val[2]);
vst1q_s32(mtx_out + 0 * out_stride + 12, c0.val[3]);
if (id.y() + 1 < height_out)
{
vst1q_s32(mtx_out + 1 * out_stride + 0, c1.val[0]);
vst1q_s32(mtx_out + 1 * out_stride + 4, c1.val[1]);
vst1q_s32(mtx_out + 1 * out_stride + 8, c1.val[2]);
vst1q_s32(mtx_out + 1 * out_stride + 12, c1.val[3]);
if (id.y() + 2 < height_out)
{
vst1q_s32(mtx_out + 2 * out_stride + 0, c2.val[0]);
vst1q_s32(mtx_out + 2 * out_stride + 4, c2.val[1]);
vst1q_s32(mtx_out + 2 * out_stride + 8, c2.val[2]);
vst1q_s32(mtx_out + 2 * out_stride + 12, c2.val[3]);
if (id.y() + 3 < height_out)
{
vst1q_s32(mtx_out + 3 * out_stride + 0, c3.val[0]);
vst1q_s32(mtx_out + 3 * out_stride + 4, c3.val[1]);
vst1q_s32(mtx_out + 3 * out_stride + 8, c3.val[2]);
vst1q_s32(mtx_out + 3 * out_stride + 12, c3.val[3]);
}
}
}
}
else if (id.y() < height_out)
{
const auto left_over_value = width_out - id.x();
auto left_over = left_over_value;
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(mtx_out + k * 4 + j) = c0.val[k][j];
}
}
if (id.y() + 1 < height_out)
{
left_over = left_over_value;
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
}
}
if (id.y() + 2 < height_out)
{
left_over = left_over_value;
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
}
}
if (id.y() + 3 < height_out)
{
left_over = left_over_value;
for (auto k = 0; k < 4 && left_over; ++k)
{
for (auto j = 0; j < 4 && left_over; ++j, --left_over)
{
*(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
}
}
}
}
}
}
},
ina, inb, out);
}
Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::S8, DataType::U8);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL, DataType::S8,
DataType::U8);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
TensorShape in0_shape = src0->tensor_shape();
TensorShape in1_shape = src1->tensor_shape();
TensorShape out_shape = dst->tensor_shape();
// Check vector-by-matrix case
if (out_shape[1] == 1)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[0] != in1_shape[1],
"The number of input0's columns must be equal to input1's rows");
}
else
{
in0_shape.collapse(2);
in1_shape.collapse(2);
out_shape.collapse(2);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[2] != out_shape[2],
"Output tensor must have the same number of batches of input0 tensor");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(
in1_shape[2] != 1 && in0_shape[2] != in1_shape[2],
"Input1 tensor must have the same number of batches of input0 or the number of batches must be set to 1");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[0] % 16, "Input1's width must be a multiple of 16");
}
return Status{};
}
} // namespace
void CpuGemmLowpMatrixMultiplyKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
{
ARM_COMPUTE_UNUSED(src0);
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, dst));
TensorShape in1_shape = src1->tensor_shape();
in1_shape.collapse(2);
_slide_matrix_b = in1_shape[2] != 1;
constexpr unsigned int num_elems_processed_per_iteration_x = 16;
constexpr unsigned int num_elems_processed_per_iteration_y = 4;
Window win;
// Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
if ((dst->dimension(1) == 1))
{
// Configure kernel window
win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x));
}
else
{
win =
calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
}
ICpuKernel::configure(win);
}
Status
CpuGemmLowpMatrixMultiplyKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, dst));
return Status{};
}
void CpuGemmLowpMatrixMultiplyKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
auto dst = tensors.get_tensor(TensorType::ACL_DST);
// Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication path
if ((dst->info()->dimension(1) == 1))
{
const auto width_matrix_a = static_cast<int>(src0->info()->dimension(0));
const auto width_matrix_b = static_cast<int>(src1->info()->dimension(0));
const auto width_out = static_cast<int>(dst->info()->dimension(0));
const auto in_b_stride =
static_cast<int>(src1->info()->strides_in_bytes()[1] / data_size_from_type(src1->info()->data_type()));
// The implementation computes 16 elements per iteration
const int window_start_x = 16 * info.thread_id;
const int window_step_x = 16 * info.num_threads;
// Make sure (window_end_x - window_start_x) is a multiple of window_step_x
const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
Window win_out(window);
win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
win_out.set(Window::DimY, Window::Dimension(0, 1, 1));
Window win_a(window);
win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
win_a.set(Window::DimY, Window::Dimension(0, 0, 0));
Window win_b;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
if (src1->info()->num_dimensions() >= 3)
{
win_b = window;
}
win_b.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
win_b.set(Window::DimY, Window::Dimension(0, 1, 1));
Iterator ina(src0, win_a);
Iterator inb(src1, win_b);
Iterator out(dst, win_out);
switch (src0->info()->data_type())
{
case DataType::S8:
case DataType::QASYMM8_SIGNED:
{
vector_matrix_multiply_s8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride,
window);
break;
}
case DataType::U8:
case DataType::QASYMM8:
{
vector_matrix_multiply_u8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride,
window);
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
break;
}
}
}
else
{
const size_t in_b_stride = src1->info()->strides_in_bytes()[1];
const int width_b = src1->info()->dimension(0);
// Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
Window win_a(window);
win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, window.y().end() / 4, 1));
// Set step_x and step_y for matrix B. Scale by a factor of 16 the X range as the input transposed matrix A has 16 times less the columns of the output matrix
Window win_b;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the the matrix multiplication is used to perform a convolution operation
if (_slide_matrix_b)
{
win_b = window;
}
win_b.set(Window::DimX, Window::Dimension(window.x().start() / 16, window.x().end() / 16, in_b_stride));
win_b.set(Window::DimY, Window::Dimension(0, 0, 0));
// The step x and step y for the output matrix has been already set using in configure()
Iterator ina(src0, win_a);
Iterator inb(src1, win_b);
Iterator out(dst, window);
switch (src0->info()->data_type())
{
case DataType::S8:
case DataType::QASYMM8_SIGNED:
{
matrix_multiply_s8(ina, inb, out, width_b, *dst->info(), window);
break;
}
case DataType::U8:
case DataType::QASYMM8:
{
matrix_multiply_u8(ina, inb, out, width_b, *dst->info(), window);
break;
}
default:
{
ARM_COMPUTE_ERROR("Not supported");
break;
}
}
}
}
const char *CpuGemmLowpMatrixMultiplyKernel::name() const
{
return "CpuGemmLowpMatrixMultiplyKernel";
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute