blob: c8706ff651891b49716e4aa68d591844e5a3216a [file] [log] [blame]
/*
* Copyright (c) 2021-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/CpuSubKernel.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include "src/core/common/Registrars.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/cpu/kernels/add/generic/neon/impl.h"
#include "src/cpu/kernels/sub/neon/impl.h"
#include "src/cpu/kernels/sub/neon/list.h"
#if defined(ENABLE_FP32_KERNELS)
namespace
{
static constexpr size_t default_mws_N1_fp32_neon = 24385;
static constexpr size_t default_mws_V1_fp32_neon = 40520;
} // namespace
#endif /* ENABLE_FP32_KERNELS */
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
namespace
{
using CpuSubKernelDataTypeISASelectorData = CpuAddKernelDataTypeISASelectorData;
using CpuSubKernelDataTypeISASelectorDataPtr = CpuAddKernelDataTypeISASelectorDataPtr;
static const std::vector<CpuSubKernel::SubKernel> available_kernels = {
{"neon_fp32_sub", [](const CpuSubKernelDataTypeISASelectorData &data) { return (data.dt == DataType::F32); },
REGISTER_FP32_NEON(arm_compute::cpu::sub_same_neon<float>)},
{"neon_fp16_sub",
[](const CpuSubKernelDataTypeISASelectorData &data) { return (data.dt == DataType::F16) && data.isa.fp16; },
REGISTER_FP16_NEON(arm_compute::cpu::sub_same_neon_fp16)},
{"neon_u8_sub", [](const CpuSubKernelDataTypeISASelectorData &data) { return (data.dt == DataType::U8); },
REGISTER_INTEGER_NEON(arm_compute::cpu::sub_same_neon<uint8_t>)},
{"neon_s16_sub", [](const CpuSubKernelDataTypeISASelectorData &data) { return (data.dt == DataType::S16); },
REGISTER_INTEGER_NEON(arm_compute::cpu::sub_same_neon<int16_t>)},
{"neon_s32_sub", [](const CpuSubKernelDataTypeISASelectorData &data) { return (data.dt == DataType::S32); },
REGISTER_INTEGER_NEON(arm_compute::cpu::sub_same_neon<int32_t>)},
{"neon_qu8_sub_fixedpoint",
[](const CpuSubKernelDataTypeISASelectorData &data)
{ return ((data.dt == DataType::QASYMM8) && data.can_use_fixedpoint); },
REGISTER_QASYMM8_NEON(arm_compute::cpu::sub_qasymm8_neon_fixedpoint)},
{"neon_qs8_sub_fixedpoint",
[](const CpuSubKernelDataTypeISASelectorData &data)
{ return ((data.dt == DataType::QASYMM8_SIGNED) && data.can_use_fixedpoint); },
REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::sub_qasymm8_signed_neon_fixedpoint)},
{"neon_qu8_sub", [](const CpuSubKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8); },
REGISTER_QASYMM8_NEON(arm_compute::cpu::sub_qasymm8_neon)},
{"neon_qs8_sub",
[](const CpuSubKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QASYMM8_SIGNED); },
REGISTER_QASYMM8_SIGNED_NEON(arm_compute::cpu::sub_qasymm8_signed_neon)},
{"neon_qs16_sub", [](const CpuSubKernelDataTypeISASelectorData &data) { return (data.dt == DataType::QSYMM16); },
REGISTER_QSYMM16_NEON(arm_compute::cpu::sub_qsymm16_neon)},
};
inline Status
validate_arguments(const ITensorInfo &src0, const ITensorInfo &src1, const ITensorInfo &dst, ConvertPolicy policy)
{
ARM_COMPUTE_UNUSED(policy);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&src0);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&src0, 1, DataType::U8, DataType::QASYMM8,
DataType::QASYMM8_SIGNED, DataType::QSYMM16, DataType::S16,
DataType::S32, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &src1);
const auto can_use_fixedpoint = sub_q8_neon_fixedpoint_possible(&src0, &src1, &dst);
const auto uk = CpuSubKernel::get_implementation<CpuSubKernelDataTypeISASelectorData>(
CpuSubKernelDataTypeISASelectorData{src0.data_type(), CPUInfo::get().get_isa(), can_use_fixedpoint});
ARM_COMPUTE_RETURN_ERROR_ON(uk == nullptr || uk->ukernel == nullptr);
const TensorShape out_shape = TensorShape::broadcast_shape(src0.tensor_shape(), src1.tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(is_data_type_quantized(src0.data_type()) && (policy == ConvertPolicy::WRAP),
"Convert policy cannot be WRAP if datatype is quantized");
// Validate in case of configured dst
if (dst.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&src0, &dst);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst.tensor_shape(), 0),
"Wrong shape for dst");
}
return Status{};
}
} // namespace
void CpuSubKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst, ConvertPolicy policy)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*src0, *src1, *dst, policy));
const TensorShape &out_shape = TensorShape::broadcast_shape(src0->tensor_shape(), src1->tensor_shape());
// Auto initialize dst if not initialized
set_shape_if_empty(*dst, out_shape);
set_data_type_if_unknown(*dst, src0->data_type());
const auto can_use_fixedpoint = sub_q8_neon_fixedpoint_possible(src0, src1, dst);
const auto uk = CpuSubKernel::get_implementation<CpuSubKernelDataTypeISASelectorData>(
CpuSubKernelDataTypeISASelectorData{src0->data_type(), CPUInfo::get().get_isa(), can_use_fixedpoint});
ARM_COMPUTE_ERROR_ON_NULLPTR(uk);
_policy = policy;
_run_method = uk->ukernel;
_name = std::string("CpuSubKernel").append("/").append(uk->name);
// CpuSubKernel doesn't need padding so update_window_and_padding() can be skipped
Window win;
std::tie(win, _split_dimension) = calculate_squashed_or_max_window(*src0, *src1);
ICpuKernel::configure(win);
}
size_t CpuSubKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
{
ARM_COMPUTE_UNUSED(thread_count);
#if defined(ENABLE_FP32_KERNELS)
if (this->_run_method == &sub_same_neon<float>)
{
size_t mws = ICPPKernel::default_mws;
if (platform.get_cpu_model() == CPUModel::N1)
{
mws = default_mws_N1_fp32_neon;
}
else if (platform.get_cpu_model() == CPUModel::V1)
{
mws = default_mws_V1_fp32_neon;
}
else
{
return ICPPKernel::default_mws;
}
// tensor is 1D or was re-interpreted as 1D
if (this->window().shape().num_dimensions() == 1)
{
return mws;
}
else
{
// scale mws down by the number of elements along all the dimensions (x, z, w, etc) except the one
// that we parallelize along (the y dimension). This allows for parallelization when the Y_SIZE is small
// but the other sizes are large, which boosts performance.
mws = static_cast<size_t>(mws / (this->window().num_iterations_total() / this->window().num_iterations(1)));
return std::max(static_cast<size_t>(1), mws);
}
}
#else /* ENABLE_FP32_KERNELS */
ARM_COMPUTE_UNUSED(platform);
#endif /* ENABLE_FP32_KERNELS */
return ICPPKernel::default_mws;
}
Status
CpuSubKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst, ConvertPolicy policy)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src0, src1, dst);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*src0, *src1, *dst, policy));
return Status{};
}
void CpuSubKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_run_method == nullptr);
const ITensor *src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
const ITensor *src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
ITensor *dst = tensors.get_tensor(TensorType::ACL_DST);
_run_method(src0, src1, dst, _policy, window);
}
const char *CpuSubKernel::name() const
{
return _name.c_str();
}
const std::vector<CpuSubKernel::SubKernel> &CpuSubKernel::get_available_kernels()
{
return available_kernels;
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute