blob: 918792754123f299bc844c053355e5d962fcef54 [file] [log] [blame]
/*
* Copyright (c) 2021-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/operators/CpuGemmDirectConv2d.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/FunctionDescriptors.h"
#include "src/common/utils/Log.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/cpu/utils/CpuAuxTensorHandler.h"
#include "support/Cast.h"
#include <set>
namespace arm_compute
{
namespace cpu
{
using namespace arm_compute::experimental;
using namespace arm_compute::utils::cast;
namespace
{
GEMMLowpOutputStageInfo calculate_output_stage_metadata(const ITensorInfo *src,
const ITensorInfo *weights,
const ITensorInfo *dst,
const ActivationLayerInfo &act)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo iqinfo = src->quantization_info();
const QuantizationInfo wqinfo = weights->quantization_info();
const QuantizationInfo oqinfo = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
const UniformQuantizationInfo uoqinfo = oqinfo.uniform();
const DataType data_type = src->data_type();
// Merge activation with output stage
const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = {
ActivationLayerInfo::ActivationFunction::RELU, ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU};
PixelValue type_min{};
PixelValue type_max{};
std::tie(type_min, type_max) = get_min_max(data_type);
int32_t min_activation = type_min.get<int32_t>();
int32_t max_activation = type_max.get<int32_t>();
if (supported_acts.count(act.activation()) != 0)
{
std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act, data_type, uoqinfo);
}
GEMMLowpOutputStageInfo os_info;
os_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
os_info.gemmlowp_offset = uoqinfo.offset;
os_info.gemmlowp_min_bound = min_activation;
os_info.gemmlowp_max_bound = max_activation;
os_info.is_quantized_per_channel = (weights->data_type() == DataType::QSYMM8_PER_CHANNEL);
quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, os_info);
return os_info;
}
cpu::AsmGemmInfo init_assembly_metadata(const Conv2dInfo &info, bool is_indirect)
{
cpu::AsmGemmInfo asm_info;
asm_info.method = is_indirect ? cpu::AsmConvMethod::Indirect : cpu::AsmConvMethod::Conv;
asm_info.ps_info = info.conv_info;
asm_info.activation_info = info.act_info;
asm_info.depth_output_gemm3d = true;
asm_info.reinterpret_input_as_3d = true;
asm_info.padding_top = info.conv_info.pad_top();
asm_info.padding_left = info.conv_info.pad_left();
asm_info.padding_value = 0.f;
asm_info.negated_offsets = false;
asm_info.fast_mode = info.enable_fast_math;
asm_info.fixed_format = info.weights_info.weight_format() != WeightFormat::UNSPECIFIED;
asm_info.weight_format = info.weights_info.weight_format();
return asm_info;
}
} // namespace
CpuGemmDirectConv2d::CpuGemmDirectConv2d()
: _gemm_asm_func(std::make_unique<CpuGemmAssemblyDispatch>()),
_activation_func(std::make_unique<CpuActivation>()),
_weights_permute_func(std::make_unique<CpuPermute>()),
_aux_mem(AuxTensorIdx::Count),
_perm_weights(),
_run_activation(false),
_is_prepared(false)
{
}
CpuGemmDirectConv2d::~CpuGemmDirectConv2d() = default;
void CpuGemmDirectConv2d::configure(const ITensorInfo *src,
const ITensorInfo *weights,
const ITensorInfo *biases,
ITensorInfo *dst,
const Conv2dInfo &info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_ERROR_THROW_ON(
CpuGemmDirectConv2d::validate(src, weights, biases != nullptr ? biases : nullptr, dst, info));
ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, info);
_run_activation = info.act_info.enabled() && !_gemm_asm_func->is_activation_supported(info.act_info);
_is_prepared = false;
_weights_permute_func->configure(weights, &_perm_weights, PermutationVector{3, 0, 1, 2});
// Configure assembly dispatch
cpu::AsmGemmInfo asm_info = init_assembly_metadata(info, false);
if (is_data_type_quantized(src->data_type()))
{
asm_info.output_stage = calculate_output_stage_metadata(src, weights, dst, info.act_info);
}
_gemm_asm_func->configure(src, &_perm_weights, biases, dst, asm_info);
// Configure activation
if (_run_activation)
{
_activation_func->configure(dst, nullptr, info.act_info);
}
// Add auxiliary memory requirements of the assembly dispatch
const auto asm_mem_req = _gemm_asm_func->workspace();
for (unsigned int slot = 0; slot < asm_mem_req.size(); ++slot)
{
_aux_mem[slot] = asm_mem_req[slot];
}
if (_aux_mem[Pretranspose].size > 0)
{
// Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
_aux_mem[PermutedWeights] =
MemoryInfo(offset_int_vec(PermutedWeights), MemoryLifetime::Prepare, weights->total_size());
}
else
{
// We must permute weights if they are WeightFormat::UNSPECIFIED
if (info.weights_info.weight_format() == WeightFormat::UNSPECIFIED)
_aux_mem[PermutedWeights] =
MemoryInfo(offset_int_vec(PermutedWeights), MemoryLifetime::Persistent, weights->total_size());
}
}
Status CpuGemmDirectConv2d::validate(const ITensorInfo *src,
const ITensorInfo *weights,
const ITensorInfo *biases,
const ITensorInfo *dst,
const Conv2dInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::BFLOAT16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
DataType::QSYMM8_PER_CHANNEL, DataType::BFLOAT16,
DataType::F16, DataType::F32);
if (!is_fixed_format(info.weights_info.weight_format()))
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights);
}
ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.num_groups > 1, "Grouping (num_groups != 1) is not supported on Neon");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->data_layout() != DataLayout::NHWC, "Data layout supported is NHWC");
const DataType data_type = src->data_type();
const TensorShape i_shape = src->tensor_shape();
const TensorShape w_shape = weights->tensor_shape();
ARM_COMPUTE_RETURN_ERROR_ON(w_shape[0] != i_shape[0]);
ARM_COMPUTE_RETURN_ERROR_ON(info.dilation != Size2D(1U, 1U));
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
// Validate biases
if (biases != nullptr)
{
if (is_data_type_quantized_asymmetric(data_type))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
}
else if (data_type == DataType::BFLOAT16)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
}
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3));
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
}
cpu::AsmGemmInfo asm_info = init_assembly_metadata(info, false);
ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuGemmAssemblyDispatch::validate(src, weights, biases, dst, asm_info));
return Status{};
}
void CpuGemmDirectConv2d::run(ITensorPack &tensors)
{
prepare(tensors);
_gemm_asm_func->run(tensors);
if (_run_activation)
{
ITensor *io = tensors.get_tensor(ACL_DST);
ITensorPack pack{{ACL_SRC, io}, {ACL_DST, io}};
_activation_func->run(pack);
}
}
void CpuGemmDirectConv2d::prepare(ITensorPack &tensors)
{
if (!_is_prepared)
{
// If we are using fixed-format kernel the weights are already reshaped
if (_gemm_asm_func && _gemm_asm_func->isVarWeightsKernel())
{
_gemm_asm_func->prepare(tensors);
_is_prepared = true;
return;
}
const ITensor *weights = tensors.get_const_tensor(ACL_SRC_1);
ITensor *weights_aux =
utils::cast::polymorphic_cast<ITensor *>(tensors.get_tensor(offset_int_vec(PermutedWeights)));
ARM_COMPUTE_ERROR_ON_NULLPTR(weights, weights_aux);
CpuAuxTensorHandler permuted_weights(_perm_weights, *weights_aux);
ITensorPack permute_tensors{{ACL_SRC, weights}, {ACL_DST, permuted_weights.get()}};
_weights_permute_func->run(permute_tensors);
tensors.add_const_tensor(ACL_SRC_1, permuted_weights.get());
// Call prepare of assembly dispatch
_gemm_asm_func->prepare(tensors);
_is_prepared = true;
}
}
experimental::MemoryRequirements CpuGemmDirectConv2d::workspace() const
{
return _aux_mem;
}
} // namespace cpu
} // namespace arm_compute