blob: 8dc3014763df34e9a6c947743bb3e74de1a1b700 [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "ROIPoolingLayer.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/validation/Helpers.h"
#include <algorithm>
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace reference
{
template <>
SimpleTensor<float> roi_pool_layer(const SimpleTensor<float> &src, const SimpleTensor<uint16_t> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
{
ARM_COMPUTE_UNUSED(output_qinfo);
const size_t num_rois = rois.shape()[1];
const size_t values_per_roi = rois.shape()[0];
DataType output_data_type = src.data_type();
TensorShape input_shape = src.shape();
TensorShape output_shape(pool_info.pooled_width(), pool_info.pooled_height(), src.shape()[2], num_rois);
SimpleTensor<float> output(output_shape, output_data_type);
const int pooled_w = pool_info.pooled_width();
const int pooled_h = pool_info.pooled_height();
const float spatial_scale = pool_info.spatial_scale();
// get sizes of x and y dimensions in src tensor
const int width = src.shape()[0];
const int height = src.shape()[1];
// Move pointer across the fourth dimension
const size_t input_stride_w = input_shape[0] * input_shape[1] * input_shape[2];
const size_t output_stride_w = output_shape[0] * output_shape[1] * output_shape[2];
const auto *rois_ptr = reinterpret_cast<const uint16_t *>(rois.data());
// Iterate through pixel width (X-Axis)
for(size_t pw = 0; pw < num_rois; ++pw)
{
const unsigned int roi_batch = rois_ptr[values_per_roi * pw];
const auto x1 = rois_ptr[values_per_roi * pw + 1];
const auto y1 = rois_ptr[values_per_roi * pw + 2];
const auto x2 = rois_ptr[values_per_roi * pw + 3];
const auto y2 = rois_ptr[values_per_roi * pw + 4];
//Iterate through pixel height (Y-Axis)
for(size_t fm = 0; fm < input_shape[2]; ++fm)
{
// Iterate through regions of interest index
for(size_t py = 0; py < pool_info.pooled_height(); ++py)
{
// Scale ROI
const int roi_anchor_x = support::cpp11::round(x1 * spatial_scale);
const int roi_anchor_y = support::cpp11::round(y1 * spatial_scale);
const int roi_width = std::max(support::cpp11::round((x2 - x1) * spatial_scale), 1.f);
const int roi_height = std::max(support::cpp11::round((y2 - y1) * spatial_scale), 1.f);
// Iterate over feature map (Z axis)
for(size_t px = 0; px < pool_info.pooled_width(); ++px)
{
auto region_start_x = static_cast<int>(std::floor((static_cast<float>(px) / pooled_w) * roi_width));
auto region_end_x = static_cast<int>(std::floor((static_cast<float>(px + 1) / pooled_w) * roi_width));
auto region_start_y = static_cast<int>(std::floor((static_cast<float>(py) / pooled_h) * roi_height));
auto region_end_y = static_cast<int>(std::floor((static_cast<float>(py + 1) / pooled_h) * roi_height));
region_start_x = std::min(std::max(region_start_x + roi_anchor_x, 0), width);
region_end_x = std::min(std::max(region_end_x + roi_anchor_x, 0), width);
region_start_y = std::min(std::max(region_start_y + roi_anchor_y, 0), height);
region_end_y = std::min(std::max(region_end_y + roi_anchor_y, 0), height);
// Iterate through the pooling region
if((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
{
/* Assign element in tensor 'output' at coordinates px, py, fm, roi_indx, to 0 */
auto out_ptr = output.data() + px + py * output_shape[0] + fm * output_shape[0] * output_shape[1] + pw * output_stride_w;
*out_ptr = 0;
}
else
{
float curr_max = -std::numeric_limits<float>::max();
for(int j = region_start_y; j < region_end_y; ++j)
{
for(int i = region_start_x; i < region_end_x; ++i)
{
/* Retrieve element from input tensor at coordinates(i, j, fm, roi_batch) */
float in_element = *(src.data() + i + j * input_shape[0] + fm * input_shape[0] * input_shape[1] + roi_batch * input_stride_w);
curr_max = std::max(in_element, curr_max);
}
}
/* Assign element in tensor 'output' at coordinates px, py, fm, roi_indx, to curr_max */
auto out_ptr = output.data() + px + py * output_shape[0] + fm * output_shape[0] * output_shape[1] + pw * output_stride_w;
*out_ptr = curr_max;
}
}
}
}
}
return output;
}
/*
Template genericised method to allow calling of roi_pooling_layer with quantized 8 bit datatype
*/
template <>
SimpleTensor<uint8_t> roi_pool_layer(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint16_t> &rois, const ROIPoolingLayerInfo &pool_info, const QuantizationInfo &output_qinfo)
{
const SimpleTensor<float> src_tmp = convert_from_asymmetric(src);
SimpleTensor<float> dst_tmp = roi_pool_layer<float>(src_tmp, rois, pool_info, output_qinfo);
SimpleTensor<uint8_t> dst = convert_to_asymmetric<uint8_t>(dst_tmp, output_qinfo);
return dst;
}
} // namespace reference
} // namespace validation
} // namespace test
} // namespace arm_compute