blob: b07aa8ce1858c00e16f6662966ffe01bce2d3d88 [file] [log] [blame]
/*
* Copyright (c) 2016-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CPP/CPPScheduler.h"
#include "arm_compute/core/CPP/ICPPKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/runtime/CPUUtils.h"
#include "support/Mutex.h"
#include <atomic>
#include <condition_variable>
#include <iostream>
#include <list>
#include <mutex>
#include <system_error>
#include <thread>
namespace arm_compute
{
namespace
{
class ThreadFeeder
{
public:
/** Constructor
*
* @param[in] start First value that will be returned by the feeder
* @param[in] end End condition (The last value returned by get_next() will be end - 1)
*/
explicit ThreadFeeder(unsigned int start = 0, unsigned int end = 0)
: _atomic_counter(start), _end(end)
{
}
/** Return the next element in the range if there is one.
*
* @param[out] next Will contain the next element if there is one.
*
* @return False if the end of the range has been reached and next wasn't set.
*/
bool get_next(unsigned int &next)
{
next = atomic_fetch_add_explicit(&_atomic_counter, 1u, std::memory_order_relaxed);
return next < _end;
}
private:
std::atomic_uint _atomic_counter;
const unsigned int _end;
};
/** Given two dimensions and a maxium number of threads to utilise, calcualte the best
* combination of threads that fit in (mutliplied together) max_threads.
*
* This algorithm assumes that work in either of the dimensions is equally difficult
* to compute
*
* @returns [m_nthreads, n_nthreads] A pair of the threads that should be used in each dimension
*/
std::pair<unsigned, unsigned> split_2d(unsigned max_threads, std::size_t m, std::size_t n)
{
/*
* We want the same ratio of threads in M & N to the ratio of m and n problem size
*
* Therefore: mt/nt == m/n where mt*nt == max_threads
*
* max_threads/nt = mt & (max_threads/nt) * (m/n) = nt
* nt^2 = max_threads * (m/n)
* nt = sqrt( max_threads * (m/n) )
*/
//ratio of m to n in problem dimensions
double ratio = m / static_cast<double>(n);
// nt = sqrt(max_threads * (m / n) )
const unsigned adjusted = std::round(
std::sqrt(max_threads * ratio));
//find the nearest factor of max_threads
for(unsigned i = 0; i != adjusted; ++i)
{
//try down
const unsigned adj_down = adjusted - i;
if(max_threads % adj_down == 0)
{
return { adj_down, max_threads / adj_down };
}
//try up
const unsigned adj_up = adjusted + i;
if(max_threads % adj_up == 0)
{
return { adj_up, max_threads / adj_up };
}
}
//we didn't find anything so lets bail out with maxes biased to the largest dimension
if(m > n)
{
return { std::min<unsigned>(m, max_threads), 1 };
}
else
{
return { 1, std::min<unsigned>(n, max_threads) };
}
}
/** Execute workloads[info.thread_id] first, then call the feeder to get the index of the next workload to run.
*
* Will run workloads until the feeder reaches the end of its range.
*
* @param[in] workloads The array of workloads
* @param[in,out] feeder The feeder indicating which workload to execute next.
* @param[in] info Threading and CPU info.
*/
void process_workloads(std::vector<IScheduler::Workload> &workloads, ThreadFeeder &feeder, const ThreadInfo &info)
{
unsigned int workload_index = info.thread_id;
do
{
ARM_COMPUTE_ERROR_ON(workload_index >= workloads.size());
workloads[workload_index](info);
}
while(feeder.get_next(workload_index));
}
void set_thread_affinity(int core_id)
{
if(core_id < 0)
{
return;
}
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(core_id, &set);
ARM_COMPUTE_EXIT_ON_MSG(sched_setaffinity(0, sizeof(set), &set),
"Error setting thread affinity");
}
class Thread final
{
public:
/** Start a new thread
*
* Thread will be pinned to a given core id if value is non-negative
*
* @param[in] core_pin Core id to pin the thread on. If negative no thread pinning will take place
*/
explicit Thread(int core_pin = -1);
Thread(const Thread &) = delete;
Thread &operator=(const Thread &) = delete;
Thread(Thread &&) = delete;
Thread &operator=(Thread &&) = delete;
/** Destructor. Make the thread join. */
~Thread();
/** Request the worker thread to start executing workloads.
*
* The thread will start by executing workloads[info.thread_id] and will then call the feeder to
* get the index of the following workload to run.
*
* @note This function will return as soon as the workloads have been sent to the worker thread.
* wait() needs to be called to ensure the execution is complete.
*/
void start(std::vector<IScheduler::Workload> *workloads, ThreadFeeder &feeder, const ThreadInfo &info);
/** Wait for the current kernel execution to complete. */
void wait();
/** Function ran by the worker thread. */
void worker_thread();
private:
std::thread _thread{};
ThreadInfo _info{};
std::vector<IScheduler::Workload> *_workloads{ nullptr };
ThreadFeeder *_feeder{ nullptr };
std::mutex _m{};
std::condition_variable _cv{};
bool _wait_for_work{ false };
bool _job_complete{ true };
std::exception_ptr _current_exception{ nullptr };
int _core_pin{ -1 };
};
Thread::Thread(int core_pin)
: _core_pin(core_pin)
{
_thread = std::thread(&Thread::worker_thread, this);
}
Thread::~Thread()
{
// Make sure worker thread has ended
if(_thread.joinable())
{
ThreadFeeder feeder;
start(nullptr, feeder, ThreadInfo());
_thread.join();
}
}
void Thread::start(std::vector<IScheduler::Workload> *workloads, ThreadFeeder &feeder, const ThreadInfo &info)
{
_workloads = workloads;
_feeder = &feeder;
_info = info;
{
std::lock_guard<std::mutex> lock(_m);
_wait_for_work = true;
_job_complete = false;
}
_cv.notify_one();
}
void Thread::wait()
{
{
std::unique_lock<std::mutex> lock(_m);
_cv.wait(lock, [&] { return _job_complete; });
}
if(_current_exception)
{
std::rethrow_exception(_current_exception);
}
}
void Thread::worker_thread()
{
set_thread_affinity(_core_pin);
while(true)
{
std::unique_lock<std::mutex> lock(_m);
_cv.wait(lock, [&] { return _wait_for_work; });
_wait_for_work = false;
_current_exception = nullptr;
// Time to exit
if(_workloads == nullptr)
{
return;
}
#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
try
{
#endif /* ARM_COMPUTE_EXCEPTIONS_ENABLED */
process_workloads(*_workloads, *_feeder, _info);
#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
}
catch(...)
{
_current_exception = std::current_exception();
}
#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
_job_complete = true;
lock.unlock();
_cv.notify_one();
}
}
} //namespace
struct CPPScheduler::Impl final
{
explicit Impl(unsigned int thread_hint)
: _num_threads(thread_hint), _threads(_num_threads - 1)
{
}
void set_num_threads(unsigned int num_threads, unsigned int thread_hint)
{
_num_threads = num_threads == 0 ? thread_hint : num_threads;
_threads.resize(_num_threads - 1);
}
void set_num_threads_with_affinity(unsigned int num_threads, unsigned int thread_hint, BindFunc func)
{
_num_threads = num_threads == 0 ? thread_hint : num_threads;
// Set affinity on main thread
set_thread_affinity(func(0, thread_hint));
// Set affinity on worked threads
_threads.clear();
for(auto i = 1U; i < _num_threads; ++i)
{
_threads.emplace_back(func(i, thread_hint));
}
}
unsigned int num_threads() const
{
return _num_threads;
}
void run_workloads(std::vector<IScheduler::Workload> &workloads);
unsigned int _num_threads;
std::list<Thread> _threads;
arm_compute::Mutex _run_workloads_mutex{};
};
/*
* This singleton has been deprecated and will be removed in the next release
*/
CPPScheduler &CPPScheduler::get()
{
static CPPScheduler scheduler;
return scheduler;
}
CPPScheduler::CPPScheduler()
: _impl(support::cpp14::make_unique<Impl>(num_threads_hint()))
{
}
CPPScheduler::~CPPScheduler() = default;
void CPPScheduler::set_num_threads(unsigned int num_threads)
{
// No changes in the number of threads while current workloads are running
arm_compute::lock_guard<std::mutex> lock(_impl->_run_workloads_mutex);
_impl->set_num_threads(num_threads, num_threads_hint());
}
void CPPScheduler::set_num_threads_with_affinity(unsigned int num_threads, BindFunc func)
{
// No changes in the number of threads while current workloads are running
arm_compute::lock_guard<std::mutex> lock(_impl->_run_workloads_mutex);
_impl->set_num_threads_with_affinity(num_threads, num_threads_hint(), func);
}
unsigned int CPPScheduler::num_threads() const
{
return _impl->num_threads();
}
#ifndef DOXYGEN_SKIP_THIS
void CPPScheduler::run_workloads(std::vector<IScheduler::Workload> &workloads)
{
// Mutex to ensure other threads won't interfere with the setup of the current thread's workloads
// Other thread's workloads will be scheduled after the current thread's workloads have finished
// This is not great because different threads workloads won't run in parallel but at least they
// won't interfere each other and deadlock.
arm_compute::lock_guard<std::mutex> lock(_impl->_run_workloads_mutex);
const unsigned int num_threads = std::min(_impl->num_threads(), static_cast<unsigned int>(workloads.size()));
if(num_threads < 1)
{
return;
}
ThreadFeeder feeder(num_threads, workloads.size());
ThreadInfo info;
info.cpu_info = &_cpu_info;
info.num_threads = num_threads;
unsigned int t = 0;
auto thread_it = _impl->_threads.begin();
for(; t < num_threads - 1; ++t, ++thread_it)
{
info.thread_id = t;
thread_it->start(&workloads, feeder, info);
}
info.thread_id = t;
process_workloads(workloads, feeder, info);
#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
try
{
#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
for(auto &thread : _impl->_threads)
{
thread.wait();
}
#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
}
catch(const std::system_error &e)
{
std::cerr << "Caught system_error with code " << e.code() << " meaning " << e.what() << '\n';
}
#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
}
#endif /* DOXYGEN_SKIP_THIS */
void CPPScheduler::schedule_common(ICPPKernel *kernel, const Hints &hints, const InputTensorMap &inputs, const OutputTensorMap &outputs)
{
ARM_COMPUTE_ERROR_ON_MSG(!kernel, "The child class didn't set the kernel");
const Window &max_window = kernel->window();
if(hints.split_dimension() == IScheduler::split_dimensions_all)
{
/*
* if the split dim is size_t max then this signals we should parallelise over
* all dimensions
*/
const std::size_t m = max_window.num_iterations(Window::DimX);
const std::size_t n = max_window.num_iterations(Window::DimY);
//in c++17 this can be swapped for auto [ m_threads, n_threads ] = split_2d(...
unsigned m_threads, n_threads;
std::tie(m_threads, n_threads) = split_2d(_impl->_num_threads, m, n);
std::vector<IScheduler::Workload> workloads;
for(unsigned int ni = 0; ni != n_threads; ++ni)
{
for(unsigned int mi = 0; mi != m_threads; ++mi)
{
workloads.push_back(
[ni, mi, m_threads, n_threads, &max_window, &kernel](const ThreadInfo & info)
{
//narrow the window to our mi-ni workload
Window win = max_window.split_window(Window::DimX, mi, m_threads)
.split_window(Window::DimY, ni, n_threads);
win.validate();
Window thread_locator;
thread_locator.set(Window::DimX, Window::Dimension(mi, m_threads));
thread_locator.set(Window::DimY, Window::Dimension(ni, n_threads));
thread_locator.validate();
kernel->run_nd(win, info, thread_locator);
});
}
}
run_workloads(workloads);
}
else
{
const unsigned int num_iterations = max_window.num_iterations(hints.split_dimension());
const unsigned int num_threads = std::min(num_iterations, _impl->_num_threads);
if(num_iterations == 0)
{
return;
}
if(!kernel->is_parallelisable() || num_threads == 1)
{
ThreadInfo info;
info.cpu_info = &_cpu_info;
if(inputs.empty())
{
kernel->run(max_window, info);
}
else
{
kernel->run_op(inputs, outputs, max_window, info);
}
}
else
{
unsigned int num_windows = 0;
switch(hints.strategy())
{
case StrategyHint::STATIC:
num_windows = num_threads;
break;
case StrategyHint::DYNAMIC:
{
const unsigned int granule_threshold = (hints.threshold() <= 0) ? num_threads : static_cast<unsigned int>(hints.threshold());
// Make sure we don't use some windows which are too small as this might create some contention on the ThreadFeeder
num_windows = num_iterations > granule_threshold ? granule_threshold : num_iterations;
break;
}
default:
ARM_COMPUTE_ERROR("Unknown strategy");
}
std::vector<IScheduler::Workload> workloads(num_windows);
for(unsigned int t = 0; t < num_windows; t++)
{
//Capture 't' by copy, all the other variables by reference:
workloads[t] = [t, &hints, &max_window, &num_windows, &kernel, &inputs, &outputs](const ThreadInfo & info)
{
Window win = max_window.split_window(hints.split_dimension(), t, num_windows);
win.validate();
if(inputs.empty())
{
kernel->run(win, info);
}
else
{
kernel->run_op(inputs, outputs, win, info);
}
};
}
run_workloads(workloads);
}
}
}
void CPPScheduler::schedule_op(ICPPKernel *kernel, const Hints &hints, const InputTensorMap &inputs, const OutputTensorMap &outputs)
{
schedule_common(kernel, hints, inputs, outputs);
}
void CPPScheduler::schedule(ICPPKernel *kernel, const Hints &hints)
{
const InputTensorMap inputs;
OutputTensorMap outputs;
schedule_common(kernel, hints, inputs, outputs);
}
} // namespace arm_compute