blob: d25621db6417d6f9e4c3cd6f7e5d22b9f4ddf45b [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "fixed_point.h"
#include "helpers.h"
/** This OpenCL kernel computes the "vector" 1x4 transposition of input matrix
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U32/S32/F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_transpose1x4(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
uint x = get_global_id(0);
uint y = get_global_id(1);
/* Compute address for Matrix B - source */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
/* Compute address for Matrix B transposed - destination. X and Y are swapped */
uint dst_addr_in_bytes = y * 16 + ((x * dst_stride_y + dst_offset_first_element_in_bytes));
uint4 b0 = vload4(0, (__global uint *)src.ptr);
vstore4(b0, 0, (__global uint *)(dst_ptr + dst_addr_in_bytes));
}
/** This OpenCL kernel computes the "vector" 1x8 transposition of input matrix
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U16/S16/QS16/F16
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_transpose1x8(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
uint x = get_global_id(0);
uint y = get_global_id(1);
/* Compute address for Matrix B - source */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
/* Compute address for Matrix B transposed - destination. X and Y are swapped */
uint dst_addr_in_bytes = y * 16 + ((x * dst_stride_y + dst_offset_first_element_in_bytes));
ushort8 b0 = vload8(0, (__global ushort *)src.ptr);
vstore8(b0, 0, (__global ushort *)(dst_ptr + dst_addr_in_bytes));
}
/** This OpenCL kernel computes the "vector" 1x16 transposition of input matrix
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U8/S8/QS8
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_transpose1x16(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
uint x = get_global_id(0);
uint y = get_global_id(1);
/* Compute address for Matrix B - source */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
/* Compute address for Matrix B transposed - destination. X and Y are swapped */
uint dst_addr_in_bytes = y * 16 + ((x * dst_stride_y + dst_offset_first_element_in_bytes));
uchar16 b0 = vload16(0, (__global uchar *)src.ptr);
vstore16(b0, 0, (__global uchar *)(dst_ptr + dst_addr_in_bytes));
}
/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block and interleaving the values
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U32/S32/F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_interleave4x4_32bit(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
/* Compute source and destination addresses */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Load values from Matrix A */
float4 a0 = vload4(0, (__global float *)(offset(&src, 0, 0)));
float4 a1 = vload4(0, (__global float *)(offset(&src, 0, 1)));
float4 a2 = vload4(0, (__global float *)(offset(&src, 0, 2)));
float4 a3 = vload4(0, (__global float *)(offset(&src, 0, 3)));
float4 val0 = (float4)(a0.s0, a1.s0, a2.s0, a3.s0);
vstore4(val0, 0, ((__global float *)dst.ptr) + 0);
val0 = (float4)(a0.s1, a1.s1, a2.s1, a3.s1);
vstore4(val0, 0, ((__global float *)dst.ptr) + 4);
val0 = (float4)(a0.s2, a1.s2, a2.s2, a3.s2);
vstore4(val0, 0, ((__global float *)dst.ptr) + 8);
val0 = (float4)(a0.s3, a1.s3, a2.s3, a3.s3);
vstore4(val0, 0, ((__global float *)dst.ptr) + 12);
}
/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block and interleaving the values
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U16/S16/QS16/F16
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_interleave4x4_16bit(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
/* Compute source and destination addresses */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Load values from Matrix A */
half8 a0 = vload8(0, (__global half *)(offset(&src, 0, 0)));
half8 a1 = vload8(0, (__global half *)(offset(&src, 0, 1)));
half8 a2 = vload8(0, (__global half *)(offset(&src, 0, 2)));
half8 a3 = vload8(0, (__global half *)(offset(&src, 0, 3)));
half8 val0 = (half8)((half4)(a0.s0, a1.s0, a2.s0, a3.s0), (half4)(a0.s1, a1.s1, a2.s1, a3.s1));
vstore8(val0, 0, ((__global half *)dst.ptr) + 0);
val0 = (half8)((half4)(a0.s2, a1.s2, a2.s2, a3.s2), (half4)(a0.s3, a1.s3, a2.s3, a3.s3));
vstore8(val0, 0, ((__global half *)dst.ptr) + 8);
val0 = (half8)((half4)(a0.s4, a1.s4, a2.s4, a3.s4), (half4)(a0.s5, a1.s5, a2.s5, a3.s5));
vstore8(val0, 0, ((__global half *)dst.ptr) + 16);
val0 = (half8)((half4)(a0.s6, a1.s6, a2.s6, a3.s6), (half4)(a0.s7, a1.s7, a2.s7, a3.s7));
vstore8(val0, 0, ((__global half *)dst.ptr) + 24);
}
/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block and interleaving the values
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U8/S8/QS8
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_interleave4x4_8bit(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
/* Compute source and destination addresses */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Load values from Matrix A */
uchar16 a0 = vload16(0, (__global uchar *)(offset(&src, 0, 0)));
uchar16 a1 = vload16(0, (__global uchar *)(offset(&src, 0, 1)));
uchar16 a2 = vload16(0, (__global uchar *)(offset(&src, 0, 2)));
uchar16 a3 = vload16(0, (__global uchar *)(offset(&src, 0, 3)));
uchar16 val0 = (uchar16)((uchar4)(a0.s0, a1.s0, a2.s0, a3.s0), (uchar4)(a0.s1, a1.s1, a2.s1, a3.s1),
(uchar4)(a0.s2, a1.s2, a2.s2, a3.s2), (uchar4)(a0.s3, a1.s3, a2.s3, a3.s3));
vstore16(val0, 0, ((__global uchar *)dst.ptr) + 0);
val0 = (uchar16)((uchar4)(a0.s4, a1.s4, a2.s4, a3.s4), (uchar4)(a0.s5, a1.s5, a2.s5, a3.s5),
(uchar4)(a0.s6, a1.s6, a2.s6, a3.s6), (uchar4)(a0.s7, a1.s7, a2.s7, a3.s7));
vstore16(val0, 0, ((__global uchar *)dst.ptr) + 16);
val0 = (uchar16)((uchar4)(a0.s8, a1.s8, a2.s8, a3.s8), (uchar4)(a0.s9, a1.s9, a2.s9, a3.s9),
(uchar4)(a0.sA, a1.sA, a2.sA, a3.sA), (uchar4)(a0.sB, a1.sB, a2.sB, a3.sB));
vstore16(val0, 0, ((__global uchar *)dst.ptr) + 32);
val0 = (uchar16)((uchar4)(a0.sC, a1.sC, a2.sC, a3.sC), (uchar4)(a0.sD, a1.sD, a2.sD, a3.sD),
(uchar4)(a0.sE, a1.sE, a2.sE, a3.sE), (uchar4)(a0.sF, a1.sF, a2.sF, a3.sF));
vstore16(val0, 0, ((__global uchar *)dst.ptr) + 48);
}
/** This kernel accumulates each row with the biases vector
*
* @note The data type must be passed at compile time -DDATA_TYPE=type. e.g. -DDATA_TYPE=short
*
* @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: U8/S8/QS8/U16/S16/F16/U32/S32/F32
* @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
* @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
* @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
* @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
* @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
#ifdef DATA_TYPE
__kernel void gemm_accumulate_biases(
IMAGE_DECLARATION(accum),
VECTOR_DECLARATION(biases))
{
Image accum = CONVERT_TO_IMAGE_STRUCT(accum);
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
VEC_DATA_TYPE(DATA_TYPE, 16)
accum_value = vload16(0, (__global DATA_TYPE *)accum.ptr);
VEC_DATA_TYPE(DATA_TYPE, 16)
biases_value = vload16(0, (__global DATA_TYPE *)biases.ptr);
accum_value = biases_value + accum_value;
// Store result in the accummulate buffer
vstore16(accum_value, 0, (__global DATA_TYPE *)accum.ptr);
}
#endif /* DATA_TYPE */
#ifdef WIDTH_MATRIX_B
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_8bit and @ref gemm_transpose1x16 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_MATRIX_B
*
* @param[in] src0_ptr Pointer to the source matrix. Supported formats: U8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported formats: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported formats: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
* @param[in] a_offset Offset to be added to each element of the matrix A
* @param[in] b_offset Offset to be added to each element of the matrix B.
* @param[in] c_offset Offset to be added to each element of the matrix C.
* @param[in] c_mult_int Multiplied with each element of the matrix C.
* @param[in] shift Number of bits to shift right the result.
*/
__kernel void gemm_mm_u8(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
int a_offset,
int b_offset,
int c_offset,
int c_mult_int,
int shift)
{
/* src_addr.s0 = address of matrix A */
/* src_addr.s1 = address of matrix B */
/* Compute address for matrix A and B */
int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
(src1_stride_y));
/* Add offset_first_element_in_bytes */
src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
/* Compute end row address for matrix B */
int end_row_mtx_b = src_addr.s1 + WIDTH_MATRIX_B;
/* Reset accumulators */
int16 c00 = 0.0f;
int16 c10 = 0.0f;
int16 c20 = 0.0f;
int16 c30 = 0.0f;
for(; src_addr.s1 <= (end_row_mtx_b - 8); src_addr += (int2)(8, 32))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
int8 a0 = (int8)a_offset + convert_int8(vload8(0, ((__global uchar *)src0_ptr) + src_addr.s0));
int16 b0 = (int16)b_offset + convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
c00 += (int16)a0.s0 * b0;
c10 += (int16)a0.s1 * b0;
c20 += (int16)a0.s2 * b0;
c30 += (int16)a0.s3 * b0;
int16 b1 = (int16)b_offset + convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1 + 16));
c00 += (int16)a0.s4 * b1;
c10 += (int16)a0.s5 * b1;
c20 += (int16)a0.s6 * b1;
c30 += (int16)a0.s7 * b1;
}
for(; src_addr.s1 < end_row_mtx_b; src_addr += (int2)(4, 16))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
int4 a0 = (int4)a_offset + convert_int4(vload4(0, ((__global uchar *)src0_ptr) + src_addr.s0));
int16 b0 = (int16)b_offset + convert_int16(vload16(0, ((__global uchar *)src1_ptr) + src_addr.s1));
c00 += (int16)a0.s0 * b0;
c10 += (int16)a0.s1 * b0;
c20 += (int16)a0.s2 * b0;
c30 += (int16)a0.s3 * b0;
}
/* Compute destination address */
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Multiply by the weight of matrix product */
c00 = (((int16)c_offset + c00) * (int16)c_mult_int) >> shift;
c10 = (((int16)c_offset + c10) * (int16)c_mult_int) >> shift;
c20 = (((int16)c_offset + c20) * (int16)c_mult_int) >> shift;
c30 = (((int16)c_offset + c30) * (int16)c_mult_int) >> shift;
/* Store 4x16 block */
vstore16(convert_uchar16_sat(c00), 0, (__global uchar *)(offset(&dst, 0, 0)));
vstore16(convert_uchar16_sat(c10), 0, (__global uchar *)(offset(&dst, 0, 1)));
vstore16(convert_uchar16_sat(c20), 0, (__global uchar *)(offset(&dst, 0, 2)));
vstore16(convert_uchar16_sat(c30), 0, (__global uchar *)(offset(&dst, 0, 3)));
}
#endif /* WIDTH_MATRIX_B */
#if defined(WIDTH_MATRIX_B) && defined(ALPHA)
/** This OpenCL kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_MATRIX_B and -DALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_f32_midgard(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
/* src_addr.s0 = address of matrix A */
/* src_addr.s1 = address of matrix B */
/* Compute address for matrix A and B */
int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
(src1_stride_y));
/* Add offset_first_element_in_bytes */
src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
/* Divide by 4 in order to get the src_addr in unit of float */
src_addr = src_addr >> 2;
/* Compute end row address for matrix B */
int end_row_mtx_b = src_addr.s1 + WIDTH_MATRIX_B;
/* Reset accumulators */
float4 c00 = 0.0f;
float4 c10 = 0.0f;
float4 c20 = 0.0f;
float4 c30 = 0.0f;
for(; src_addr.s1 <= (end_row_mtx_b - 8); src_addr += (int2)(8, 8))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
float4 a0 = vload4(0, ((__global float *)src0_ptr) + src_addr.s0);
float4 b0 = vload4(0, ((__global float *)src1_ptr) + src_addr.s1);
c00 += (float4)a0.s0 * b0;
c10 += (float4)a0.s1 * b0;
c20 += (float4)a0.s2 * b0;
c30 += (float4)a0.s3 * b0;
/* Load values from matrix A (interleaved) and matrix B (transposed) */
a0 = vload4(0, ((__global float *)src0_ptr) + src_addr.s0 + 4);
b0 = vload4(0, ((__global float *)src1_ptr) + src_addr.s1 + 4);
c00 += (float4)a0.s0 * b0;
c10 += (float4)a0.s1 * b0;
c20 += (float4)a0.s2 * b0;
c30 += (float4)a0.s3 * b0;
}
for(; src_addr.s1 < end_row_mtx_b; src_addr += (int2)(4, 4))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
float4 a0 = vload4(0, ((__global float *)src0_ptr) + src_addr.s0);
float4 b0 = vload4(0, ((__global float *)src1_ptr) + src_addr.s1);
c00 += (float4)a0.s0 * b0;
c10 += (float4)a0.s1 * b0;
c20 += (float4)a0.s2 * b0;
c30 += (float4)a0.s3 * b0;
}
/* Compute destination address */
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Multiply by the weight of matrix product */
c00 = c00 * (float4)ALPHA;
c10 = c10 * (float4)ALPHA;
c20 = c20 * (float4)ALPHA;
c30 = c30 * (float4)ALPHA;
/* Store 4x4 block */
vstore4(c00, 0, (__global float *)(offset(&dst, 0, 0)));
vstore4(c10, 0, (__global float *)(offset(&dst, 0, 1)));
vstore4(c20, 0, (__global float *)(offset(&dst, 0, 2)));
vstore4(c30, 0, (__global float *)(offset(&dst, 0, 3)));
}
/** This OpenCL kernel is optimised for Bifrost. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_MATRIX_B and -DALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_f32_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
__global float *src_addr_a = (__global float *)(src0_ptr + get_global_id(1) * src0_stride_y + src0_offset_first_element_in_bytes);
__global float *src_addr_b = (__global float *)(src1_ptr + get_global_id(0) * src1_stride_y + src1_offset_first_element_in_bytes);
// Compute end row address for matrix B
__global float *src_end_addr_b = src_addr_b + WIDTH_MATRIX_B;
// Reset accumulators
float c00 = 0.0f;
float c01 = 0.0f;
float c02 = 0.0f;
float c03 = 0.0f;
float c10 = 0.0f;
float c11 = 0.0f;
float c12 = 0.0f;
float c13 = 0.0f;
float c20 = 0.0f;
float c21 = 0.0f;
float c22 = 0.0f;
float c23 = 0.0f;
float c30 = 0.0f;
float c31 = 0.0f;
float c32 = 0.0f;
float c33 = 0.0f;
for(; src_addr_b <= (src_end_addr_b - 16); src_addr_a += 16, src_addr_b += 16)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
float4 a0 = vload4(0, src_addr_a);
float4 b0 = vload4(0, src_addr_b);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload4(0, src_addr_a + 4);
b0 = vload4(0, src_addr_b + 4);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload4(0, src_addr_a + 8);
b0 = vload4(0, src_addr_b + 8);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload4(0, src_addr_a + 12);
b0 = vload4(0, src_addr_b + 12);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
}
for(; src_addr_b < src_end_addr_b; src_addr_a += 4, src_addr_b += 4)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
float4 a0 = vload4(0, src_addr_a);
float4 b0 = vload4(0, src_addr_b);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Multiply by the weight of matrix product
c00 = c00 * ALPHA;
c01 = c01 * ALPHA;
c02 = c02 * ALPHA;
c03 = c03 * ALPHA;
c10 = c10 * ALPHA;
c11 = c11 * ALPHA;
c12 = c12 * ALPHA;
c13 = c13 * ALPHA;
c20 = c20 * ALPHA;
c21 = c21 * ALPHA;
c22 = c22 * ALPHA;
c23 = c23 * ALPHA;
c30 = c30 * ALPHA;
c31 = c31 * ALPHA;
c32 = c32 * ALPHA;
c33 = c33 * ALPHA;
barrier(CLK_GLOBAL_MEM_FENCE);
// Store 4x4 block
vstore4((float4)(c00, c01, c02, c03), 0, (__global float *)(offset(&dst, 0, 0)));
vstore4((float4)(c10, c11, c12, c13), 0, (__global float *)(offset(&dst, 0, 1)));
vstore4((float4)(c20, c21, c22, c23), 0, (__global float *)(offset(&dst, 0, 2)));
vstore4((float4)(c30, c31, c32, c33), 0, (__global float *)(offset(&dst, 0, 3)));
}
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x8 before running the matrix multiplication
*
* @attention The width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_MATRIX_B and -DALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_f16(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
/* src_addr.s0 = address of matrix A */
/* src_addr.s1 = address of matrix B */
/* Compute address for matrix A and B */
int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
(src1_stride_y));
/* Add offset_first_element_in_bytes */
src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
/* Divide by 2 in order to get the src_addr in unit of half */
src_addr = src_addr >> 1;
/* Compute end row address for matrix B */
int end_row_mtx_b = src_addr.s1 + WIDTH_MATRIX_B;
/* Reset accumulators */
half8 c00 = 0.0f;
half8 c10 = 0.0f;
half8 c20 = 0.0f;
half8 c30 = 0.0f;
for(; src_addr.s1 <= (end_row_mtx_b - 8); src_addr += (int2)(8, 16))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
half4 a0 = vload4(0, ((__global half *)src0_ptr) + src_addr.s0);
half8 b0 = vload8(0, ((__global half *)src1_ptr) + src_addr.s1);
c00 += (half8)a0.s0 * b0;
c10 += (half8)a0.s1 * b0;
c20 += (half8)a0.s2 * b0;
c30 += (half8)a0.s3 * b0;
/* Load values from matrix A (interleaved) and matrix B (transposed) */
a0 = vload4(0, ((__global half *)src0_ptr) + src_addr.s0 + 4);
b0 = vload8(0, ((__global half *)src1_ptr) + src_addr.s1 + 8);
c00 += (half8)a0.s0 * b0;
c10 += (half8)a0.s1 * b0;
c20 += (half8)a0.s2 * b0;
c30 += (half8)a0.s3 * b0;
}
for(; src_addr.s1 < end_row_mtx_b; src_addr += (int2)(4, 8))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
half4 a0 = vload4(0, ((__global half *)src0_ptr) + src_addr.s0);
half8 b0 = vload8(0, ((__global half *)src1_ptr) + src_addr.s1);
c00 += (half8)a0.s0 * b0;
c10 += (half8)a0.s1 * b0;
c20 += (half8)a0.s2 * b0;
c30 += (half8)a0.s3 * b0;
}
/* Compute destination address */
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Multiply by the weight of matrix product */
c00 = c00 * (half8)ALPHA;
c10 = c10 * (half8)ALPHA;
c20 = c20 * (half8)ALPHA;
c30 = c30 * (half8)ALPHA;
/* Store 4x8 block */
vstore8(c00, 0, (__global half *)(offset(&dst, 0, 0)));
vstore8(c10, 0, (__global half *)(offset(&dst, 0, 1)));
vstore8(c20, 0, (__global half *)(offset(&dst, 0, 2)));
vstore8(c30, 0, (__global half *)(offset(&dst, 0, 3)));
}
#ifdef FIXED_POINT_POSITION
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) in 8 bit fixed point precision
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_8bit and @ref gemm_transpose1x16 before running the matrix multiplication
*
* @attention The width of matrix B, the alpha's value and fixed point position need to be passed at compile time using -DWIDTH_MATRIX_B -DALPHA and -DFIXED_POINT_POSITION
*
* @note: ALPHA must be passed in 8 bit fixed point format
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_qs8(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
/* src_addr.s0 = address of matrix A */
/* src_addr.s1 = address of matrix B */
/* Compute address for matrix A and B */
int2 src_addr = (int2)(get_global_id(1), get_global_id(0)) * (int2)((src0_stride_y),
(src1_stride_y));
/* Add offset_first_element_in_bytes */
src_addr = src_addr + ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
/* Compute end row address for matrix B */
int end_row_mtx_b = src_addr.s1 + WIDTH_MATRIX_B;
/* Reset accumulators */
short8 c00 = 0.0f;
short8 c10 = 0.0f;
short8 c20 = 0.0f;
short8 c30 = 0.0f;
short8 c01 = 0.0f;
short8 c11 = 0.0f;
short8 c21 = 0.0f;
short8 c31 = 0.0f;
/* This for loop performs 1 accumulation for each iteration */
for(; src_addr.s1 <= (end_row_mtx_b - 16); src_addr += (int2)(4, 16))
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
char4 a0 = vload4(0, ((__global char *)src0_ptr) + src_addr.s0);
char16 b0 = vload16(0, ((__global char *)src1_ptr) + src_addr.s1);
c00 = mlal_sat_qs8x8(c00, (char8)a0.s0, b0.s01234567, FIXED_POINT_POSITION);
c10 = mlal_sat_qs8x8(c10, (char8)a0.s1, b0.s01234567, FIXED_POINT_POSITION);
c20 = mlal_sat_qs8x8(c20, (char8)a0.s2, b0.s01234567, FIXED_POINT_POSITION);
c30 = mlal_sat_qs8x8(c30, (char8)a0.s3, b0.s01234567, FIXED_POINT_POSITION);
c01 = mlal_sat_qs8x8(c01, (char8)a0.s0, b0.s89ABCDEF, FIXED_POINT_POSITION);
c11 = mlal_sat_qs8x8(c11, (char8)a0.s1, b0.s89ABCDEF, FIXED_POINT_POSITION);
c21 = mlal_sat_qs8x8(c21, (char8)a0.s2, b0.s89ABCDEF, FIXED_POINT_POSITION);
c31 = mlal_sat_qs8x8(c31, (char8)a0.s3, b0.s89ABCDEF, FIXED_POINT_POSITION);
}
/* Compute destination address */
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Multiply by the weight of matrix product */
char16 c00_qs8 = convert_char16_sat((short16)(c00, c01));
char16 c10_qs8 = convert_char16_sat((short16)(c10, c11));
char16 c20_qs8 = convert_char16_sat((short16)(c20, c21));
char16 c30_qs8 = convert_char16_sat((short16)(c30, c31));
c00_qs8 = mul_sat_qs8x16(c00_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
c10_qs8 = mul_sat_qs8x16(c10_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
c20_qs8 = mul_sat_qs8x16(c20_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
c30_qs8 = mul_sat_qs8x16(c30_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
/* Store 16x4 block */
vstore16(c00_qs8, 0, (__global char *)(offset(&dst, 0, 0)));
vstore16(c10_qs8, 0, (__global char *)(offset(&dst, 0, 1)));
vstore16(c20_qs8, 0, (__global char *)(offset(&dst, 0, 2)));
vstore16(c30_qs8, 0, (__global char *)(offset(&dst, 0, 3)));
}
#endif /* FIXED_POINT_POSITION */
#ifdef WIDTH_VECTOR_A
/** This OpenCL kernel computes the vector by matrix multiplication between the vector A (src0) and matrix B (src1)
*
* @attention The width of vector A, the width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_VECTOR_A -DWIDTH_MATRIX_B and -DALPHA
*
* @attention The input vector A and matrix B must not be reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_vm_f32(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
int idx = get_global_id(0) * 4;
/* Compute the address for the vector A and matrix B */
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
src_addr.s1 += idx * sizeof(float);
int end_row_vec_a = src_addr.s0 + (WIDTH_VECTOR_A * sizeof(float));
float4 acc = 0.0f;
for(; src_addr.s0 <= (end_row_vec_a - 2 * sizeof(float)); src_addr += (int2)(2 * sizeof(float), 2 * src1_stride_y))
{
float2 a0 = vload2(0, (__global float *)(src0_ptr + src_addr.s0));
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
float4 b1 = vload4(0, (__global float *)(src1_ptr + src_addr.s1 + src1_stride_y));
acc += b0 * (float4)a0.s0;
acc += b1 * (float4)a0.s1;
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(float), src1_stride_y))
{
float a0 = *((__global float *)(src0_ptr + src_addr.s0));
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
acc += b0 * (float4)a0;
}
/* Compute destination address */
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Multiply by the weight of vector-matrix product */
acc = acc * (float4)ALPHA;
vstore4(acc, 0, (__global float *)(offset(&dst, 0, 0)));
}
/** This OpenCL kernel computes the vector by matrix multiplication between the vector A (src0) and matrix B (src1)
*
* @attention The width of vector A, the width of matrix B and the alpha's value need to be passed at compile time using -DWIDTH_VECTOR_A -DWIDTH_MATRIX_B and -DALPHA
*
* @attention The input vector A and matrix B must not be reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_vm_f16(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
int idx = get_global_id(0) * 8;
/* Compute the address for the vector A and matrix B */
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
src_addr.s1 += idx * sizeof(half);
int end_row_vec_a = src_addr.s0 + (WIDTH_VECTOR_A * sizeof(half));
half8 acc = 0.0f;
for(; src_addr.s0 <= (end_row_vec_a - 4 * sizeof(half)); src_addr += (int2)(4 * sizeof(half), 4 * src1_stride_y))
{
half4 a0 = vload4(0, (__global half *)(src0_ptr + src_addr.s0));
half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1 + 0 * src1_stride_y));
half8 b1 = vload8(0, (__global half *)(src1_ptr + src_addr.s1 + 1 * src1_stride_y));
half8 b2 = vload8(0, (__global half *)(src1_ptr + src_addr.s1 + 2 * src1_stride_y));
half8 b3 = vload8(0, (__global half *)(src1_ptr + src_addr.s1 + 3 * src1_stride_y));
acc += b0 * (half8)a0.s0;
acc += b1 * (half8)a0.s1;
acc += b2 * (half8)a0.s2;
acc += b3 * (half8)a0.s3;
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(half), src1_stride_y))
{
half a0 = *((__global half *)(src0_ptr + src_addr.s0));
half8 b0 = vload8(0, (__global half *)(src1_ptr + src_addr.s1));
acc += b0 * (half8)a0;
}
/* Compute destination address */
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Multiply by the weight of vector-matrix product */
acc = acc * (half8)ALPHA;
vstore8(acc, 0, (__global half *)(offset(&dst, 0, 0)));
}
#ifdef FIXED_POINT_POSITION
/** This OpenCL kernel computes the vector by matrix multiplication between the vector A (src0) and matrix B (src1) in 8 bit fixed point
*
* @attention The width of vector A, the width of matrix B, the alpha's value and the fixed point position need to be passed at compile time using -DWIDTH_VECTOR_A -DWIDTH_MATRIX_B, -DALPHA and -DFIXED_POINT_POSITION
*
* @attention The input vector A and matrix B must not be reshaped
*
* @note: ALPHA must be passed in 8 bit fixed point format
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_vm_qs8(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
int idx = get_global_id(0) * 16;
/* Compute the address for the vector A and matrix B */
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
src_addr.s1 += idx;
int end_row_vec_a = src_addr.s0 + WIDTH_VECTOR_A;
short8 acc0 = 0;
short8 acc1 = 0;
/* This for loop performs 4 accumulations per iteration */
for(; src_addr.s0 <= (end_row_vec_a - 4); src_addr += (int2)(4, 4 * src1_stride_y))
{
char4 a0 = vload4(0, (__global char *)(src0_ptr + src_addr.s0));
char16 b0 = vload16(0, (__global char *)(src1_ptr + src_addr.s1 + 0 * src1_stride_y));
char16 b1 = vload16(0, (__global char *)(src1_ptr + src_addr.s1 + 1 * src1_stride_y));
char16 b2 = vload16(0, (__global char *)(src1_ptr + src_addr.s1 + 2 * src1_stride_y));
char16 b3 = vload16(0, (__global char *)(src1_ptr + src_addr.s1 + 3 * src1_stride_y));
acc0 = mlal_sat_qs8x8(acc0, (char8)a0.s0, b0.s01234567, FIXED_POINT_POSITION);
acc0 = mlal_sat_qs8x8(acc0, (char8)a0.s1, b1.s01234567, FIXED_POINT_POSITION);
acc0 = mlal_sat_qs8x8(acc0, (char8)a0.s2, b2.s01234567, FIXED_POINT_POSITION);
acc0 = mlal_sat_qs8x8(acc0, (char8)a0.s3, b3.s01234567, FIXED_POINT_POSITION);
acc1 = mlal_sat_qs8x8(acc1, (char8)a0.s0, b0.s89ABCDEF, FIXED_POINT_POSITION);
acc1 = mlal_sat_qs8x8(acc1, (char8)a0.s1, b1.s89ABCDEF, FIXED_POINT_POSITION);
acc1 = mlal_sat_qs8x8(acc1, (char8)a0.s2, b2.s89ABCDEF, FIXED_POINT_POSITION);
acc1 = mlal_sat_qs8x8(acc1, (char8)a0.s3, b3.s89ABCDEF, FIXED_POINT_POSITION);
}
/* Left-over accumulations */
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
{
char a0 = *((__global char *)(src0_ptr + src_addr.s0));
char16 b0 = vload16(0, (__global char *)(src1_ptr + src_addr.s1));
acc0 = mlal_sat_qs8x8(acc0, (char8)a0, b0.s01234567, FIXED_POINT_POSITION);
acc1 = mlal_sat_qs8x8(acc1, (char8)a0, b0.s89ABCDEF, FIXED_POINT_POSITION);
}
/* Compute destination address */
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Multiply by the weight of matrix product */
char16 acc_qs8 = convert_char16_sat((short16)(acc0, acc1));
acc_qs8 = mul_sat_qs8x16(acc_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
/* Store 16 values */
vstore16(acc_qs8, 0, (__global char *)(offset(&dst, 0, 0)));
}
#endif /* FIXED_POINT_POSITION */
#endif /* WIDTH_VECTOR_A */
#endif /* WIDTH_MATRIX_B && ALPHA */
#ifdef BETA
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
* @attention The beta's value need to be passed at compile time using -DBETA
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_ma_f32(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
/* Compute source and destination addresses */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Load values from A x B */
float4 alpha_ab = vload4(0, (__global float *)dst.ptr);
/* Load values from Matrix C */
float4 c = vload4(0, (__global float *)src.ptr);
/* Computes alpha * axb + beta * c */
float4 out = alpha_ab + (float4)BETA * c;
/* Store final result in axb matrix */
vstore4(out, 0, (__global float *)dst.ptr);
}
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
* @attention The beta's value need to be passed at compile time using -DBETA
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_ma_f16(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
/* Compute source and destination addresses */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Load values from A x B */
half8 alpha_ab = vload8(0, (__global half *)dst.ptr);
/* Load values from Matrix C */
half8 c = vload8(0, (__global half *)src.ptr);
/* Computes alpha * axb + beta * c */
half8 out = alpha_ab + (half8)BETA * c;
/* Store final result in axb matrix */
vstore8(out, 0, (__global half *)dst.ptr);
}
#ifdef FIXED_POINT_POSITION
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices in 8 bit fixed point taking into account that the second matrix might be weighted by a scalar value beta:
*
* @attention The beta's value and the fixed point position need to be passed at compile time using -DBETA and -DFIXED_POINT_POSITION
*
* @note: BETA must be passed in 8 bit fixed point format
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: QS8
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_ma_qs8(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
/* Compute source and destination addresses */
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
/* Load values from A x B */
char16 alpha_ab = vload16(0, (__global char *)dst.ptr);
/* Load values from Matrix C */
char16 c = vload16(0, (__global char *)src.ptr);
/* Computes alpha * axb + beta * c */
char16 out = mla_sat_qs8x16(alpha_ab, (char16)BETA, c, FIXED_POINT_POSITION);
/* Store final result in axb matrix */
vstore16(out, 0, (__global char *)dst.ptr);
}
#endif /* FIXED_POINT_POSITION */
#endif /* BETA */
#ifdef WIDTH_VECTOR_A
/** This OpenCL kernel computes the vector by matrix multiplication between each row of A (src0) and matrix B (src1) used for locally connected layer
*
* @attention The width of A need to be passed at compile time using -DWIDTH_VECTOR_A
*
* @attention The input A and matrix B must not be reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_lc_vm_f32(IMAGE_DECLARATION(src0),
TENSOR3D_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
int idx = get_global_id(0) * 4;
int idy = get_global_id(1);
/* Compute the address for the vector A and matrix B */
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes + src0_stride_y * idy, src1_offset_first_element_in_bytes + src1_stride_z * idy));
src_addr.s1 += idx * sizeof(float);
int end_row_vec_a = src_addr.s0 + (WIDTH_VECTOR_A * sizeof(float));
float4 acc = 0.0f;
for(; src_addr.s0 <= (end_row_vec_a - 2 * sizeof(float)); src_addr += (int2)(2 * sizeof(float), 2 * src1_stride_y))
{
float2 a0 = vload2(0, (__global float *)(src0_ptr + src_addr.s0));
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
float4 b1 = vload4(0, (__global float *)(src1_ptr + src_addr.s1 + src1_stride_y));
acc += b0 * (float4)a0.s0;
acc += b1 * (float4)a0.s1;
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(float), src1_stride_y))
{
float a0 = *((__global float *)(src0_ptr + src_addr.s0));
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
acc += b0 * (float4)a0;
}
/* Compute destination address */
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
vstore4(acc, 0, (__global float *)(offset(&dst, 0, 0)));
}
#endif /* WIDTH_VECTOR_A */