blob: 60307bc9a74c67a195246d8589909bf2b8f232f9 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#define ADD_OP(a, b) ((a) + (b))
#define SUB_OP(a, b) ((a) - (b))
#define MUL_OP(a, b) ((a) * (b))
#define INVSQRT_OP(a) rsqrt((a))
#define SQCVT_SAT(a) (a)
#if defined(VEC_SIZE) && defined(DATA_TYPE)
#if defined(FUSED_ACTIVATION)
#include "activation_layer.cl"
#define ACTIVATION_FUNC(x) ACTIVATION_OP(FUSED_ACTIVATION, x)
#else /* defined(FUSED_ACTIVATION) */
#define ACTIVATION_FUNC(x) (x)
#endif /* defined(FUSED_ACTIVATION) */
/** Apply batch normalization.
*
* @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p input_ptr
* @param[in] mean_stride_x Stride of the mean source tensor in X dimension (in bytes)
* @param[in] mean_step_x mean_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor
* @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p input_ptr
* @param[in] var_stride_x Stride of the var tensor in X dimension (in bytes)
* @param[in] var_step_x var_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] var_offset_first_element_in_bytes The offset of the first element in the var source tensor
* @param[in] beta_ptr Pointer to the beta source tensor. Supported data types: same as @p input_ptr
* @param[in] beta_stride_x Stride of the beta source tensor in X dimension (in bytes)
* @param[in] beta_step_x beta_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] beta_offset_first_element_in_bytes The offset of the first element in the beta source tensor
* @param[in] gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p input_ptr
* @param[in] gamma_stride_x Stride of the gamma source tensor in X dimension (in bytes)
* @param[in] gamma_step_x gamma_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] gamma_offset_first_element_in_bytes The offset of the first element in the gamma source tensor
* @param[in] epsilon Epsilon parameter in the batch normalization equation
*/
__kernel void batchnormalization_layer_nchw(TENSOR3D_DECLARATION(input),
#ifndef IN_PLACE
TENSOR3D_DECLARATION(output),
#endif /* not IN_PLACE */
VECTOR_DECLARATION(mean),
VECTOR_DECLARATION(var),
#ifndef USE_DEFAULT_BETA
VECTOR_DECLARATION(beta),
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
VECTOR_DECLARATION(gamma),
#endif /* USE_DEFAULT_GAMMA */
float epsilon)
{
Tensor3D in = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D out = in;
#else /* IN_PLACE */
Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
Vector mean = CONVERT_TO_VECTOR_STRUCT(mean);
Vector var = CONVERT_TO_VECTOR_STRUCT(var);
#ifndef USE_DEFAULT_BETA
Vector beta = CONVERT_TO_VECTOR_STRUCT(beta);
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
Vector gamma = CONVERT_TO_VECTOR_STRUCT(gamma);
#endif /* USE_DEFAULT_GAMMA */
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
data = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
denominator = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
numerator = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
x_bar = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res = 0;
const int current_slice = get_global_id(2);
data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in.ptr);
denominator = *((__global DATA_TYPE *)(var.ptr + current_slice * var.stride_x));
denominator = INVSQRT_OP(ADD_OP(denominator, ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(epsilon))));
// Calculate x bar and store results
numerator = *((__global DATA_TYPE *)(mean.ptr + current_slice * mean.stride_x));
numerator = SUB_OP(data, numerator);
x_bar = MUL_OP(numerator, denominator);
#ifndef USE_DEFAULT_GAMMA
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
gamma_vec = *((__global DATA_TYPE *)(gamma.ptr + current_slice * gamma.stride_x));
res = MUL_OP(gamma_vec, x_bar);
#else /* USE_DEFAULT_GAMMA */
// gamma is equal to 1, no need to perform multiplications
res = x_bar;
#endif /* USE_DEFAULT_GAMMA */
#ifndef USE_DEFAULT_BETA
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
beta_vec = *((__global DATA_TYPE *)(beta.ptr + current_slice * beta.stride_x));
// beta is not zero, hence we need to perform the addition
res = ADD_OP(res, beta_vec);
#endif /* USE_DEFAULT_BETA */
res = ACTIVATION_FUNC(res);
VSTORE(VEC_SIZE)
(res, 0, (__global DATA_TYPE *)out.ptr);
}
/** Apply batch normalization on tensors with NHWC format.
*
* @param[in] input_ptr Pointer to the first source tensor. Supported data types: F16/F32
* @param[in] input_stride_x Stride of the first source tensor in X dimension (in bytes)
* @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] input_stride_y Stride of the first source tensor in Y dimension (in bytes)
* @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] input_stride_z Stride of the first source tensor in Z dimension (in bytes)
* @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] input_offset_first_element_in_bytes The offset of the first element in the first source tensor
* @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
* @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] mean_ptr Pointer to the mean source tensor. Supported data types: same as @p input_ptr
* @param[in] mean_stride_x Stride of the mean source tensor in X dimension (in bytes)
* @param[in] mean_step_x mean_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor
* @param[in] var_ptr Pointer to the var tensor. Supported data types: same as @p input_ptr
* @param[in] var_stride_x Stride of the var tensor in X dimension (in bytes)
* @param[in] var_step_x var_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] var_offset_first_element_in_bytes The offset of the first element in the var source tensor
* @param[in] beta_ptr Pointer to the beta source tensor. Supported data types: same as @p input_ptr
* @param[in] beta_stride_x Stride of the beta source tensor in X dimension (in bytes)
* @param[in] beta_step_x beta_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] beta_offset_first_element_in_bytes The offset of the first element in the beta source tensor
* @param[in] gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p input_ptr
* @param[in] gamma_stride_x Stride of the gamma source tensor in X dimension (in bytes)
* @param[in] gamma_step_x gamma_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] gamma_offset_first_element_in_bytes The offset of the first element in the gamma source tensor
* @param[in] epsilon Epsilon parameter in the batch normalization equation
*/
__kernel void batchnormalization_layer_nhwc(TENSOR3D_DECLARATION(input),
#ifndef IN_PLACE
TENSOR3D_DECLARATION(output),
#endif /* not IN_PLACE */
VECTOR_DECLARATION(mean),
VECTOR_DECLARATION(var),
#ifndef USE_DEFAULT_BETA
VECTOR_DECLARATION(beta),
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
VECTOR_DECLARATION(gamma),
#endif /* USE_DEFAULT_GAMMA */
float epsilon)
{
Tensor3D in = CONVERT_TO_TENSOR3D_STRUCT(input);
#ifdef IN_PLACE
Tensor3D out = in;
#else /* IN_PLACE */
Tensor3D out = CONVERT_TO_TENSOR3D_STRUCT(output);
#endif /* IN_PLACE */
Vector mean = CONVERT_TO_VECTOR_STRUCT(mean);
Vector var = CONVERT_TO_VECTOR_STRUCT(var);
#ifndef USE_DEFAULT_BETA
Vector beta = CONVERT_TO_VECTOR_STRUCT(beta);
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
Vector gamma = CONVERT_TO_VECTOR_STRUCT(gamma);
#endif /* USE_DEFAULT_GAMMA */
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
data = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
denominator = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
numerator = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
x_bar = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
res = 0;
const int current_slice = get_global_id(0);
data = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in.ptr);
denominator = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(var.ptr + current_slice * VEC_SIZE * var.stride_x));
denominator = INVSQRT_OP(ADD_OP(denominator, ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(epsilon))));
// Calculate x bar and store results
numerator = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(mean.ptr + current_slice * VEC_SIZE * mean.stride_x));
numerator = SUB_OP(data, numerator);
x_bar = MUL_OP(numerator, denominator);
#ifndef USE_DEFAULT_GAMMA
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
gamma_vec = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(gamma.ptr + current_slice * VEC_SIZE * gamma.stride_x));
res = MUL_OP(gamma_vec, x_bar);
#else /* USE_DEFAULT_GAMMA */
// gamma is equal to 1, no need to perform multiplications
res = x_bar;
#endif /* USE_DEFAULT_GAMMA */
#ifndef USE_DEFAULT_BETA
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
beta_vec = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(beta.ptr + current_slice * VEC_SIZE * beta.stride_x));
// beta is not zero, hence we need to perform the addition
res = ADD_OP(res, beta_vec);
#endif /* USE_DEFAULT_BETA */
res = ACTIVATION_FUNC(res);
VSTORE(VEC_SIZE)
(res, 0, (__global DATA_TYPE *)out.ptr);
}
#endif /* defined(VEC_SIZE) && defined(DATA_TYPE) */
#if defined(NUM_CHANNELS) && defined(DATA_TYPE) && defined(EPSILON)
/** Fuse batchnorm parameters to convolution layer parameters
*
* @attention Data type should be passed using the -DDATA_TYPE compile flag, e.g. -DDATA_TYPE=float
* @attention Input tensor depth should be given as a preprocessor argument using -DNUM_CHANNELS=size. e.g. -DNUM_CHANNELS=16
* @attention Batch normalization epsilon parameter should be given as a preprocessor argument with -DEPSILON=value. e.g. -DEPSILON=0.001f
*
* @param[in] conv_w_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] conv_w_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] conv_w_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] conv_w_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] conv_w_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] conv_w_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] conv_w_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] conv_w_stride_w Stride of the source tensor in W dimension (in bytes)
* @param[in] conv_w_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] conv_w_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] bn_mean_ptr Pointer to the mean source tensor. Supported data types: same as @p input_ptr
* @param[in] bn_mean_stride_x Stride of the mean source tensor in X dimension (in bytes)
* @param[in] bn_mean_step_x bn_mean_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] bn_mean_offset_first_element_in_bytes The offset of the first element in the mean source tensor
* @param[in] bn_var_ptr Pointer to the var tensor. Supported data types: same as @p input_ptr
* @param[in] bn_var_stride_x Stride of the var tensor in X dimension (in bytes)
* @param[in] bn_var_step_x bn_var_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] bn_var_offset_first_element_in_bytes The offset of the first element in the var source tensor
* @param[out] fused_w_ptr Pointer to the destination weights tensors. Supported data types: same as @p input_ptr
* @param[in] fused_w_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] fused_w_step_x fused_w_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] fused_w_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] fused_w_step_y fused_w_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] fused_w_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] fused_w_step_z fused_w_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] fused_w_stride_w Stride of the destination tensor in W dimension (in bytes)
* @param[in] fused_w_step_w fused_w_stride_w * number of elements along W processed per workitem(in bytes)
* @param[in] fused_w_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] fused_b_ptr Pointer to the destination bias tensor. Supported data types: same as @p input_ptr
* @param[in] fused_b_stride_x Stride of the bias source tensor in X dimension (in bytes)
* @param[in] fused_b_step_x fused_b_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] fused_b_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] conv_b_ptr Pointer to the source bias tensor. Supported data types: same as @p input_ptr
* @param[in] conv_b_stride_x Stride of the beta source tensor in X dimension (in bytes)
* @param[in] conv_b_step_x conv_b_beta_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] conv_b_offset_first_element_in_bytes The offset of the first element in the source bias tensor
* @param[in] bn_beta_ptr Pointer to the beta source tensor. Supported data types: same as @p input_ptr
* @param[in] bn_beta_stride_x Stride of the beta source tensor in X dimension (in bytes)
* @param[in] bn_beta_step_x bn_beta_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] bn_beta_offset_first_element_in_bytes The offset of the first element in the beta source tensor
* @param[in] bn_gamma_ptr Pointer to the gamma source tensor. Supported data types: same as @p input_ptr
* @param[in] bn_gamma_stride_x Stride of the gamma source tensor in X dimension (in bytes)
* @param[in] bn_gamma_step_x bn_gamma_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] bn_gamma_offset_first_element_in_bytes The offset of the first element in the gamma source tensor
* @param[in] epsilon Epsilon parameter in the batch normalization equation
*/
__kernel void fuse_batchnormalization_layer(TENSOR4D_DECLARATION(conv_w),
VECTOR_DECLARATION(bn_mean),
VECTOR_DECLARATION(bn_var)
#ifndef IN_PLACE_W
,
TENSOR4D_DECLARATION(fused_w)
#endif /* not IN_PLACE_W */
#ifndef IN_PLACE_B
,
VECTOR_DECLARATION(fused_b)
#endif /* not IN_PLACE_B */
#ifdef HAS_BIAS
,
VECTOR_DECLARATION(conv_b)
#endif /* HAS_BIAS */
#ifndef USE_DEFAULT_BETA
,
VECTOR_DECLARATION(bn_beta)
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
,
VECTOR_DECLARATION(bn_gamma)
#endif /* USE_DEFAULT_GAMMA */
)
{
Tensor4D conv_w = CONVERT_TO_TENSOR4D_STRUCT(conv_w, NUM_CHANNELS);
Vector bn_mean = CONVERT_TO_VECTOR_STRUCT_NO_STEP(bn_mean);
Vector bn_var = CONVERT_TO_VECTOR_STRUCT_NO_STEP(bn_var);
// Conditional ops
#ifdef HAS_BIAS
Vector conv_b = CONVERT_TO_VECTOR_STRUCT_NO_STEP(conv_b);
#endif /* HAS_BIAS */
#ifndef USE_DEFAULT_BETA
Vector bn_beta = CONVERT_TO_VECTOR_STRUCT_NO_STEP(bn_beta);
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
Vector bn_gamma = CONVERT_TO_VECTOR_STRUCT_NO_STEP(bn_gamma);
#endif /* USE_DEFAULT_GAMMA */
// In-place ops
#ifdef IN_PLACE_W
Tensor4D fused_w = conv_w;
uint fused_w_stride_x = conv_w_stride_x;
#else /* IN_PLACE_W */
Tensor4D fused_w = CONVERT_TO_TENSOR4D_STRUCT(fused_w, NUM_CHANNELS);
#endif /* IN_PLACE_W */
#ifdef IN_PLACE_B
Vector fused_b = conv_b;
#else /* IN_PLACE_B */
Vector fused_b = CONVERT_TO_VECTOR_STRUCT_NO_STEP(fused_b);
#endif /* IN_PLACE_B */
const int current_slice = get_global_id(2) / NUM_CHANNELS;
#if defined(VEC_SIZE) && defined(LAST_ACCESSED_X)
// Check if access on width gets out of bounds
// If it does shift access vector to access elements within bounds
const int xi = (int)(get_global_id(0) * VEC_SIZE);
conv_w.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * conv_w_stride_x;
fused_w.ptr -= max(xi - (int)LAST_ACCESSED_X, 0) * fused_w_stride_x;
// Load W
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
wn = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)conv_w.ptr);
#else // !defined(VEC_SIZE) || !defined(LAST_ACCESSED_X)
DATA_TYPE wn = *((__global DATA_TYPE *)(conv_w.ptr));
#endif // defined(VEC_SIZE) && defined(LAST_ACCESSED_X)
// rvar = 1 / sqrt(var + epsilon)
const DATA_TYPE var = *((__global DATA_TYPE *)(bn_var.ptr + current_slice * bn_var.stride_x));
const DATA_TYPE rvar = INVSQRT_OP(ADD_OP(var, SQCVT_SAT((float)EPSILON)));
wn *= rvar;
// Load b
const DATA_TYPE mean = *((__global DATA_TYPE *)(bn_mean.ptr + current_slice * bn_mean.stride_x));
DATA_TYPE bn = 0;
#ifdef HAS_BIAS
bn = *((__global DATA_TYPE *)(conv_b.ptr + current_slice * conv_b.stride_x));
#endif /* HAS_BIAS */
bn = (bn - mean) * rvar;
#ifndef USE_DEFAULT_GAMMA
const DATA_TYPE gamma_scalar = *((__global DATA_TYPE *)(bn_gamma.ptr + current_slice * bn_gamma.stride_x));
wn *= gamma_scalar;
bn *= gamma_scalar;
#endif /* USE_DEFAULT_GAMMA */
#ifndef USE_DEFAULT_BETA
const DATA_TYPE beta_scalar = *((__global DATA_TYPE *)(bn_beta.ptr + current_slice * bn_beta.stride_x));
bn += beta_scalar;
#endif /* USE_DEFAULT_BETA */
#if defined(VEC_SIZE) && defined(LAST_ACCESSED_X)
// Store updated weights
VSTORE(VEC_SIZE)
(wn, 0, (__global DATA_TYPE *)fused_w.ptr);
#else // !defined(VEC_SIZE) || !defined(LAST_ACCESSED_X)
*((__global DATA_TYPE *)(fused_w.ptr)) = wn;
#endif // defined(VEC_SIZE) && defined(LAST_ACCESSED_X)
// Store updated bias
*((__global DATA_TYPE *)(fused_b.ptr + current_slice * fused_b.stride_x)) = bn;
}
#endif /* defined(NUM_CHANNELS) && defined(DATA_TYPE) && defined(EPSILON) */