blob: cba5eea4376d75db7700a640d99f09bd530b7e0b [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#ifdef FIXED_POINT_POSITION
#include "fixed_point.h"
#endif // FIXED_POINT_POSITION
#if defined(TRANSPOSE_W) && defined(MULT_TRANSPOSE1XW_WIDTH)
#if ELEMENT_SIZE == 1
#define DATA_TYPE uchar
#elif ELEMENT_SIZE == 2
#define DATA_TYPE ushort
#elif ELEMENT_SIZE == 4
#define DATA_TYPE uint
#else // ELEMENT_SIZE == 1
#error "Element size not supported"
#endif // ELEMENT_SIZE
/** This OpenCL kernel computes the "vector" 1xW transposition of input matrix
*
* @note The transposition width must be passed at compile time using -DTRANSPOSE_W (i.e. -DTRANSPOSE_W)
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U8/S8/QS8/QASYMM8/U16/S16/QS16/F16/U32/S32/F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_transpose1xW(TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst))
{
uint x = get_global_id(0);
uint y = get_global_id(1);
uint z = get_global_id(2);
// Compute address for Matrix B - source
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
// Compute address for Matrix B transposed - destination. X and Y are swapped
uint dst_addr_in_bytes = dst_offset_first_element_in_bytes + y * TRANSPOSE_W * sizeof(DATA_TYPE) * MULT_TRANSPOSE1XW_WIDTH + (x / MULT_TRANSPOSE1XW_WIDTH) * dst_stride_y +
(x % MULT_TRANSPOSE1XW_WIDTH) * TRANSPOSE_W * sizeof(DATA_TYPE);
// Add offset for batched GEMM
dst_addr_in_bytes += z * dst_stride_z;
VEC_DATA_TYPE(DATA_TYPE, TRANSPOSE_W)
b0 = VLOAD(TRANSPOSE_W)(0, (__global DATA_TYPE *)src.ptr);
VSTORE(TRANSPOSE_W)
(b0, 0, (__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes));
}
#endif // defined(TRANSPOSE_W) && defined(MULT_TRANSPOSE1XW_WIDTH)
#if defined(MULT_INTERLEAVE4X4_HEIGHT) && defined(DATA_TYPE)
/** This OpenCL kernel reshapes the input matrix transposing each 4x4 block and interleaving the values
*
* @note The data type must be passed at compile time using -DDATA_TYPE (i.e. -DDATA_TYPE=float)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: U8/S8/QS8/QASYMM8/U16/S16/QS16/F16/U32/S32/F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_interleave4x4(TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst))
{
// Compute source and destination addresses
uint x = get_global_id(0);
uint y = get_global_id(1);
uint z = get_global_id(2);
// Compute address for source tensor
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
// Compute address for Matrix B transposed - destination. X and Y are swapped
uint dst_addr_in_bytes = dst_offset_first_element_in_bytes + x * sizeof(DATA_TYPE) * 16 * MULT_INTERLEAVE4X4_HEIGHT + (y / MULT_INTERLEAVE4X4_HEIGHT) * dst_stride_y +
(y % MULT_INTERLEAVE4X4_HEIGHT) * 4 * sizeof(DATA_TYPE);
// Add offset for batched GEMM
dst_addr_in_bytes += z * dst_stride_z;
__global uchar *input_ptr = src.ptr;
// Load values from Matrix A
VEC_DATA_TYPE(DATA_TYPE, 4)
a0 = vload4(0, (__global DATA_TYPE *)(input_ptr + 0 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, 4)
a1 = vload4(0, (__global DATA_TYPE *)(input_ptr + 1 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, 4)
a2 = vload4(0, (__global DATA_TYPE *)(input_ptr + 2 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, 4)
a3 = vload4(0, (__global DATA_TYPE *)(input_ptr + 3 * src_stride_y));
VEC_DATA_TYPE(DATA_TYPE, 4)
val0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s0, a1.s0, a2.s0, a3.s0);
vstore4(val0, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 0 * MULT_INTERLEAVE4X4_HEIGHT));
val0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s1, a1.s1, a2.s1, a3.s1);
vstore4(val0, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 4 * MULT_INTERLEAVE4X4_HEIGHT));
val0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s2, a1.s2, a2.s2, a3.s2);
vstore4(val0, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 8 * MULT_INTERLEAVE4X4_HEIGHT));
val0 = (VEC_DATA_TYPE(DATA_TYPE, 4))(a0.s3, a1.s3, a2.s3, a3.s3);
vstore4(val0, 0, ((__global DATA_TYPE *)(dst_ptr + dst_addr_in_bytes) + 12 * MULT_INTERLEAVE4X4_HEIGHT));
}
#endif // defined(MULT_INTERLEAVE4X4_HEIGHT) && defined(DATA_TYPE)
#if defined(COLS_B) && defined(MULT_TRANSPOSE1XW_WIDTH) && defined(MULT_INTERLEAVE4X4_HEIGHT)
/** This OpenCL kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_interleaved_transposed_f32_midgard(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
int z = get_global_id(2);
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 4;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
__global float *src_addr_a = (__global float *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
__global float *src_addr_b = (__global float *)(src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes);
// Compute end row address for matrix B
__global float *src_end_addr_b = src_addr_b + COLS_B;
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
// Reset accumulators
float4 c00 = 0.0f;
float4 c10 = 0.0f;
float4 c20 = 0.0f;
float4 c30 = 0.0f;
for(; src_addr_b <= (src_end_addr_b - (int)(8 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
float4 a0 = vload4(0, src_addr_a);
float4 b0 = vload4(0, src_addr_b);
c00 += (float4)a0.s0 * b0;
c10 += (float4)a0.s1 * b0;
c20 += (float4)a0.s2 * b0;
c30 += (float4)a0.s3 * b0;
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT);
b0 = vload4(0, src_addr_b + 4 * MULT_TRANSPOSE1XW_WIDTH);
c00 += (float4)a0.s0 * b0;
c10 += (float4)a0.s1 * b0;
c20 += (float4)a0.s2 * b0;
c30 += (float4)a0.s3 * b0;
}
for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 4 * MULT_TRANSPOSE1XW_WIDTH)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
float4 a0 = vload4(0, src_addr_a);
float4 b0 = vload4(0, src_addr_b);
c00 += (float4)a0.s0 * b0;
c10 += (float4)a0.s1 * b0;
c20 += (float4)a0.s2 * b0;
c30 += (float4)a0.s3 * b0;
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
#if defined(ALPHA)
// Multiply by the weight of matrix product
c00 = c00 * (float4)ALPHA;
c10 = c10 * (float4)ALPHA;
c20 = c20 * (float4)ALPHA;
c30 = c30 * (float4)ALPHA;
#endif // defined(ALPHA)
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Add offset for batched GEMM
dst_addr += z * dst_stride_z;
// Store 4x4 block
vstore4(c00, 0, (__global float *)(dst_addr + 0 * dst_stride_y));
vstore4(c10, 0, (__global float *)(dst_addr + 1 * dst_stride_y));
vstore4(c20, 0, (__global float *)(dst_addr + 2 * dst_stride_y));
vstore4(c30, 0, (__global float *)(dst_addr + 3 * dst_stride_y));
}
/** This OpenCL kernel is optimized for Bifrost. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
*
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_interleaved_transposed_f32_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
int z = get_global_id(2);
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 4;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
__global float *src_addr_a = (__global float *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
__global float *src_addr_b = (__global float *)(src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes);
// Compute end row address for matrix B
__global float *src_end_addr_b = src_addr_b + COLS_B;
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
// Reset accumulators
float c00 = 0.0f;
float c01 = 0.0f;
float c02 = 0.0f;
float c03 = 0.0f;
float c10 = 0.0f;
float c11 = 0.0f;
float c12 = 0.0f;
float c13 = 0.0f;
float c20 = 0.0f;
float c21 = 0.0f;
float c22 = 0.0f;
float c23 = 0.0f;
float c30 = 0.0f;
float c31 = 0.0f;
float c32 = 0.0f;
float c33 = 0.0f;
for(; src_addr_b <= (src_end_addr_b - (int)(16 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += (16 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (16 * MULT_TRANSPOSE1XW_WIDTH))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
float4 a0 = vload4(0, src_addr_a);
float4 b0 = vload4(0, src_addr_b);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT);
b0 = vload4(0, src_addr_b + 4 * MULT_TRANSPOSE1XW_WIDTH);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload4(0, src_addr_a + 8 * MULT_INTERLEAVE4X4_HEIGHT);
b0 = vload4(0, src_addr_b + 8 * MULT_TRANSPOSE1XW_WIDTH);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload4(0, src_addr_a + 12 * MULT_INTERLEAVE4X4_HEIGHT);
b0 = vload4(0, src_addr_b + 12 * MULT_TRANSPOSE1XW_WIDTH);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
}
for(; src_addr_b < src_end_addr_b; src_addr_a += (4 * MULT_INTERLEAVE4X4_HEIGHT), src_addr_b += (4 * MULT_TRANSPOSE1XW_WIDTH))
{
// Load values from matrix A (interleaved) and matrix B (transposed)
float4 a0 = vload4(0, src_addr_a);
float4 b0 = vload4(0, src_addr_b);
c00 = fma(a0.s0, b0.s0, c00);
c01 = fma(a0.s0, b0.s1, c01);
c02 = fma(a0.s0, b0.s2, c02);
c03 = fma(a0.s0, b0.s3, c03);
c10 = fma(a0.s1, b0.s0, c10);
c11 = fma(a0.s1, b0.s1, c11);
c12 = fma(a0.s1, b0.s2, c12);
c13 = fma(a0.s1, b0.s3, c13);
c20 = fma(a0.s2, b0.s0, c20);
c21 = fma(a0.s2, b0.s1, c21);
c22 = fma(a0.s2, b0.s2, c22);
c23 = fma(a0.s2, b0.s3, c23);
c30 = fma(a0.s3, b0.s0, c30);
c31 = fma(a0.s3, b0.s1, c31);
c32 = fma(a0.s3, b0.s2, c32);
c33 = fma(a0.s3, b0.s3, c33);
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
#if defined(ALPHA)
// Multiply by the weight of matrix product
c00 = c00 * ALPHA;
c01 = c01 * ALPHA;
c02 = c02 * ALPHA;
c03 = c03 * ALPHA;
c10 = c10 * ALPHA;
c11 = c11 * ALPHA;
c12 = c12 * ALPHA;
c13 = c13 * ALPHA;
c20 = c20 * ALPHA;
c21 = c21 * ALPHA;
c22 = c22 * ALPHA;
c23 = c23 * ALPHA;
c30 = c30 * ALPHA;
c31 = c31 * ALPHA;
c32 = c32 * ALPHA;
c33 = c33 * ALPHA;
#endif // defined(ALPHA)
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Add offset for batched GEMM
dst_addr += z * dst_stride_z;
// Store 4x4 block
vstore4((float4)(c00, c01, c02, c03), 0, (__global float *)(dst_addr + 0 * dst_stride_y));
vstore4((float4)(c10, c11, c12, c13), 0, (__global float *)(dst_addr + 1 * dst_stride_y));
vstore4((float4)(c20, c21, c22, c23), 0, (__global float *)(dst_addr + 2 * dst_stride_y));
vstore4((float4)(c30, c31, c32, c33), 0, (__global float *)(dst_addr + 3 * dst_stride_y));
}
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x8 before running the matrix multiplication
*
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_interleaved_transposed_f16(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
int z = get_global_id(2);
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
__global half *src_addr_a = (__global half *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
__global half *src_addr_b = (__global half *)(src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes);
// Compute end row address for matrix B
__global half *src_end_addr_b = src_addr_b + COLS_B;
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
// Reset accumulators
half8 c00 = 0.0f;
half8 c10 = 0.0f;
half8 c20 = 0.0f;
half8 c30 = 0.0f;
for(; src_addr_b <= (src_end_addr_b - (int)(16 * MULT_TRANSPOSE1XW_WIDTH)); src_addr_a += 8 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 16 * MULT_TRANSPOSE1XW_WIDTH)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
half4 a0 = vload4(0, src_addr_a);
half8 b0 = vload8(0, src_addr_b);
c00 += (half8)a0.s0 * b0;
c10 += (half8)a0.s1 * b0;
c20 += (half8)a0.s2 * b0;
c30 += (half8)a0.s3 * b0;
// Load values from matrix A (interleaved) and matrix B (transposed)
a0 = vload4(0, src_addr_a + 4 * MULT_INTERLEAVE4X4_HEIGHT);
b0 = vload8(0, src_addr_b + 8 * MULT_TRANSPOSE1XW_WIDTH);
c00 += (half8)a0.s0 * b0;
c10 += (half8)a0.s1 * b0;
c20 += (half8)a0.s2 * b0;
c30 += (half8)a0.s3 * b0;
}
for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
half4 a0 = vload4(0, src_addr_a);
half8 b0 = vload8(0, src_addr_b);
c00 += (half8)a0.s0 * b0;
c10 += (half8)a0.s1 * b0;
c20 += (half8)a0.s2 * b0;
c30 += (half8)a0.s3 * b0;
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
#if defined(ALPHA)
// Multiply by the weight of matrix product
c00 = c00 * (half8)ALPHA;
c10 = c10 * (half8)ALPHA;
c20 = c20 * (half8)ALPHA;
c30 = c30 * (half8)ALPHA;
#endif // defined(ALPHA)
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Add offset for batched GEMM
dst_addr += z * dst_stride_z;
// Store 4x8 block
vstore8(c00, 0, (__global half *)(dst_addr + 0 * dst_stride_y));
vstore8(c10, 0, (__global half *)(dst_addr + 1 * dst_stride_y));
vstore8(c20, 0, (__global half *)(dst_addr + 2 * dst_stride_y));
vstore8(c30, 0, (__global half *)(dst_addr + 3 * dst_stride_y));
}
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED)
#if defined(FIXED_POINT_POSITION)
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) in 8 bit fixed point precision
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_8bit and @ref gemm_transpose1x16 before running the matrix multiplication
*
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @note: ALPHA must be passed in 8 bit fixed point format
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS8
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_interleaved_transposed_qs8(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
int z = get_global_id(2);
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 16;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
__global char *src_addr_a = src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes;
__global char *src_addr_b = src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes;
// Compute end row address for matrix B
__global char *src_end_addr_b = src_addr_b + COLS_B;
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
// Reset accumulators
short8 c00 = 0.0f;
short8 c10 = 0.0f;
short8 c20 = 0.0f;
short8 c30 = 0.0f;
short8 c01 = 0.0f;
short8 c11 = 0.0f;
short8 c21 = 0.0f;
short8 c31 = 0.0f;
// This for loop performs 1 accumulation for each iteration
for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 16 * MULT_TRANSPOSE1XW_WIDTH)
{
// Load values from matrix A (interleaved) and matrix B (transposed)
char4 a0 = vload4(0, src_addr_a);
char16 b0 = vload16(0, src_addr_b);
c00 = mlal_sat_qs8x8(c00, (char8)a0.s0, b0.s01234567, FIXED_POINT_POSITION);
c10 = mlal_sat_qs8x8(c10, (char8)a0.s1, b0.s01234567, FIXED_POINT_POSITION);
c20 = mlal_sat_qs8x8(c20, (char8)a0.s2, b0.s01234567, FIXED_POINT_POSITION);
c30 = mlal_sat_qs8x8(c30, (char8)a0.s3, b0.s01234567, FIXED_POINT_POSITION);
c01 = mlal_sat_qs8x8(c01, (char8)a0.s0, b0.s89ABCDEF, FIXED_POINT_POSITION);
c11 = mlal_sat_qs8x8(c11, (char8)a0.s1, b0.s89ABCDEF, FIXED_POINT_POSITION);
c21 = mlal_sat_qs8x8(c21, (char8)a0.s2, b0.s89ABCDEF, FIXED_POINT_POSITION);
c31 = mlal_sat_qs8x8(c31, (char8)a0.s3, b0.s89ABCDEF, FIXED_POINT_POSITION);
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Multiply by the weight of matrix product
char16 c00_qs8 = convert_char16_sat((short16)(c00, c01));
char16 c10_qs8 = convert_char16_sat((short16)(c10, c11));
char16 c20_qs8 = convert_char16_sat((short16)(c20, c21));
char16 c30_qs8 = convert_char16_sat((short16)(c30, c31));
#if defined(ALPHA)
c00_qs8 = mul_sat_qs8x16(c00_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
c10_qs8 = mul_sat_qs8x16(c10_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
c20_qs8 = mul_sat_qs8x16(c20_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
c30_qs8 = mul_sat_qs8x16(c30_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Add offset for batched GEMM
dst_addr += z * dst_stride_z;
// Store 16x4 block
vstore16(c00_qs8, 0, (__global char *)(dst_addr + 0 * dst_stride_y));
vstore16(c10_qs8, 0, (__global char *)(dst_addr + 1 * dst_stride_y));
vstore16(c20_qs8, 0, (__global char *)(dst_addr + 2 * dst_stride_y));
vstore16(c30_qs8, 0, (__global char *)(dst_addr + 3 * dst_stride_y));
}
/** This OpenCL kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1) in 16 bit fixed point precision
* Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x8 before running the matrix multiplication
*
* @note The number of columns of matrix B and the optional alpha's value need to be passed at compile time using -DCOLS_B and -DALPHA
* @note The multiplication factor for the transposition width (mult_transpose1xW_width) must be passed at compile time using -DMULT_TRANSPOSE1XW_WIDTH (i.e. -DMULT_TRANSPOSE1XW_WIDTH=2)
* @note The multiplication factor for the height of the 4x4 interleaved block must be passed at compile time using -DMULT_INTERLEAVE4X4_HEIGHT (i.e. -DMULT_INTERLEAVE4X4_HEIGHT=2)
*
* @note: ALPHA must be passed in 16 bit fixed point format
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_interleaved_transposed_qs16(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
int x = get_global_id(0) / MULT_TRANSPOSE1XW_WIDTH;
int y = get_global_id(1) / MULT_INTERLEAVE4X4_HEIGHT;
int z = get_global_id(2);
// Offset
const int offset_row_a = (get_global_id(1) % MULT_INTERLEAVE4X4_HEIGHT) * 4;
const int offset_row_b = (get_global_id(0) % MULT_TRANSPOSE1XW_WIDTH) * 8;
// src_addr_a = address of matrix A
// src_addr_b = address of matrix B
__global short *src_addr_a = (__global short *)(src0_ptr + z * src0_stride_z + y * src0_stride_y + src0_offset_first_element_in_bytes);
__global short *src_addr_b = (__global short *)(src1_ptr + z * src1_stride_z + x * src1_stride_y + src1_offset_first_element_in_bytes);
// Compute end row address for matrix B
__global short *src_end_addr_b = src_addr_b + COLS_B;
src_addr_a += offset_row_a;
src_addr_b += offset_row_b;
// Reset accumulators
int8 c00 = 0.0f;
int8 c10 = 0.0f;
int8 c20 = 0.0f;
int8 c30 = 0.0f;
// This for loop performs 1 accumulation for each iteration
for(; src_addr_b < src_end_addr_b; src_addr_a += 4 * MULT_INTERLEAVE4X4_HEIGHT, src_addr_b += 8 * MULT_TRANSPOSE1XW_WIDTH)
{
/* Load values from matrix A (interleaved) and matrix B (transposed) */
short4 a0 = vload4(0, src_addr_a);
short8 b0 = vload8(0, src_addr_b);
c00 = mlal_sat_qs16x8(c00, (short8)a0.s0, b0, FIXED_POINT_POSITION);
c10 = mlal_sat_qs16x8(c10, (short8)a0.s1, b0, FIXED_POINT_POSITION);
c20 = mlal_sat_qs16x8(c20, (short8)a0.s2, b0, FIXED_POINT_POSITION);
c30 = mlal_sat_qs16x8(c30, (short8)a0.s3, b0, FIXED_POINT_POSITION);
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Multiply by the weight of matrix product
short8 c00_qs16 = convert_short8_sat(c00);
short8 c10_qs16 = convert_short8_sat(c10);
short8 c20_qs16 = convert_short8_sat(c20);
short8 c30_qs16 = convert_short8_sat(c30);
#if defined(ALPHA)
c00_qs16 = mul_sat_qs16x8(c00_qs16, (short8)ALPHA, FIXED_POINT_POSITION);
c10_qs16 = mul_sat_qs16x8(c10_qs16, (short8)ALPHA, FIXED_POINT_POSITION);
c20_qs16 = mul_sat_qs16x8(c20_qs16, (short8)ALPHA, FIXED_POINT_POSITION);
c30_qs16 = mul_sat_qs16x8(c30_qs16, (short8)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Add offset for batched GEMM
dst_addr += z * dst_stride_z;
// Store 8x4 block
vstore8(c00_qs16, 0, (__global short *)(dst_addr + 0 * dst_stride_y));
vstore8(c10_qs16, 0, (__global short *)(dst_addr + 1 * dst_stride_y));
vstore8(c20_qs16, 0, (__global short *)(dst_addr + 2 * dst_stride_y));
vstore8(c30_qs16, 0, (__global short *)(dst_addr + 3 * dst_stride_y));
}
#endif // defined(FIXED_POINT_POSITION)
#endif // defined(COLS_B) && defined(MULT_TRANSPOSE1XW_WIDTH) && defined(MULT_INTERLEAVE4X4_HEIGHT)
#if defined(COLS_A) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && (NUM_ELEMS_PROCESSED_PER_THREAD_Y)
#if defined(DATA_TYPE)
#define VECTOR_TYPE VEC_DATA_TYPE(DATA_TYPE, NUM_ELEMS_PROCESSED_PER_THREAD_X)
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
* @note This OpenCL kernel works with floating point data types (F16/F32)
* @note The floating point data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=float)
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y
* @note The number of matrix A columns and the optional alpha's value need to be passed at compile time using -DCOLS_A and -DALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_floating_point(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
// Compute starting address for matrix A and Matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Update address for the matrix A
src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
// Update address for the matrix B
src_addr.s1 += idx * sizeof(DATA_TYPE);
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
src_addr.s1 += get_global_id(2) * src1_stride_z;
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(DATA_TYPE));
VECTOR_TYPE acc0 = 0.0f;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
VECTOR_TYPE acc1 = 0.0f;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
VECTOR_TYPE acc2 = 0.0f;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
VECTOR_TYPE acc3 = 0.0f;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(DATA_TYPE)); src_addr += (int2)(2 * sizeof(DATA_TYPE), 2 * src1_stride_y))
{
// Load values from matrix A
VEC_DATA_TYPE(DATA_TYPE, 2)
a0 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
VEC_DATA_TYPE(DATA_TYPE, 2)
a1 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
VEC_DATA_TYPE(DATA_TYPE, 2)
a2 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
VEC_DATA_TYPE(DATA_TYPE, 2)
a3 = vload2(0, (__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
VECTOR_TYPE b1 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1 + src1_stride_y));
// Accumulate
acc0 += b0 * (VECTOR_TYPE)a0.s0;
acc0 += b1 * (VECTOR_TYPE)a0.s1;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * (VECTOR_TYPE)a1.s0;
acc1 += b1 * (VECTOR_TYPE)a1.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * (VECTOR_TYPE)a2.s0;
acc2 += b1 * (VECTOR_TYPE)a2.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * (VECTOR_TYPE)a3.s0;
acc3 += b1 * (VECTOR_TYPE)a3.s1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(DATA_TYPE), src1_stride_y))
{
// Load values from matrix A
DATA_TYPE a0 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
DATA_TYPE a1 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
DATA_TYPE a2 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
DATA_TYPE a3 = *((__global DATA_TYPE *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
VECTOR_TYPE b0 = VLOAD(NUM_ELEMS_PROCESSED_PER_THREAD_X)(0, (__global DATA_TYPE *)(src1_ptr + src_addr.s1));
// Accumulate
acc0 += b0 * (VECTOR_TYPE)a0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 += b0 * (VECTOR_TYPE)a1;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 += b0 * (VECTOR_TYPE)a2;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 += b0 * (VECTOR_TYPE)a3;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Add offset for batched GEMM
dst_addr += get_global_id(2) * dst_stride_z;
// Multiply by the weight of matrix-matrix product and store the result
#if defined(ALPHA)
acc0 = acc0 * (VECTOR_TYPE)ALPHA;
#endif // defined(ALPHA)
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(acc0, 0, (__global DATA_TYPE *)(dst_addr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if defined(ALPHA)
acc1 = acc1 * (VECTOR_TYPE)ALPHA;
#endif // defined(ALPHA)
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(acc1, 0, (__global DATA_TYPE *)(dst_addr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if defined(ALPHA)
acc2 = acc2 * (VECTOR_TYPE)ALPHA;
#endif // defined(ALPHA)
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(acc2, 0, (__global DATA_TYPE *)(dst_addr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if defined(ALPHA)
acc3 = acc3 * (VECTOR_TYPE)ALPHA;
#endif // defined(ALPHA)
VSTORE(NUM_ELEMS_PROCESSED_PER_THREAD_X)
(acc3, 0, (__global DATA_TYPE *)(dst_addr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#endif // defined(DATA_TYPE)
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
* @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
* This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=4.
* @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
* @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_floating_point_f32_bifrost(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
// Compute starting address for matrix A and matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Update address for matrix A
src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
// Update address for matrix B
src_addr.s1 += idx * sizeof(float);
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
// For convolution layer we do not want to slide the matrix B along Z
src_addr.s1 += get_global_id(2) * src1_stride_z;
// Address boundary for matrix A
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(float));
// Initialize accumulators
float acc00 = 0.0f;
float acc01 = 0.0f;
float acc02 = 0.0f;
float acc03 = 0.0f;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
float acc10 = 0.0f;
float acc11 = 0.0f;
float acc12 = 0.0f;
float acc13 = 0.0f;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
float acc20 = 0.0f;
float acc21 = 0.0f;
float acc22 = 0.0f;
float acc23 = 0.0f;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float acc30 = 0.0f;
float acc31 = 0.0f;
float acc32 = 0.0f;
float acc33 = 0.0f;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// A and B src indices get incremented at the same time.
for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(float)); src_addr += (int2)(2 * sizeof(float), 2 * src1_stride_y))
{
// Load values from matrix A
float2 a0 = vload2(0, (__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
float2 a1 = vload2(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
float2 a2 = vload2(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float2 a3 = vload2(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1 + 0 * src1_stride_y));
float4 b1 = vload4(0, (__global float *)(src1_ptr + src_addr.s1 + 1 * src1_stride_y));
// Multiply and accumulate
acc00 = fma(a0.s0, b0.s0, acc00);
acc00 = fma(a0.s1, b1.s0, acc00);
acc01 = fma(a0.s0, b0.s1, acc01);
acc01 = fma(a0.s1, b1.s1, acc01);
acc02 = fma(a0.s0, b0.s2, acc02);
acc02 = fma(a0.s1, b1.s2, acc02);
acc03 = fma(a0.s1, b1.s3, acc03);
acc03 = fma(a0.s0, b0.s3, acc03);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc10 = fma(a1.s0, b0.s0, acc10);
acc11 = fma(a1.s0, b0.s1, acc11);
acc12 = fma(a1.s0, b0.s2, acc12);
acc13 = fma(a1.s0, b0.s3, acc13);
acc10 = fma(a1.s1, b1.s0, acc10);
acc11 = fma(a1.s1, b1.s1, acc11);
acc12 = fma(a1.s1, b1.s2, acc12);
acc13 = fma(a1.s1, b1.s3, acc13);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc20 = fma(a2.s0, b0.s0, acc20);
acc21 = fma(a2.s0, b0.s1, acc21);
acc22 = fma(a2.s0, b0.s2, acc22);
acc23 = fma(a2.s0, b0.s3, acc23);
acc20 = fma(a2.s1, b1.s0, acc20);
acc21 = fma(a2.s1, b1.s1, acc21);
acc22 = fma(a2.s1, b1.s2, acc22);
acc23 = fma(a2.s1, b1.s3, acc23);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc30 = fma(a3.s0, b0.s0, acc30);
acc31 = fma(a3.s0, b0.s1, acc31);
acc32 = fma(a3.s0, b0.s2, acc32);
acc33 = fma(a3.s0, b0.s3, acc33);
acc30 = fma(a3.s1, b1.s0, acc30);
acc31 = fma(a3.s1, b1.s1, acc31);
acc32 = fma(a3.s1, b1.s2, acc32);
acc33 = fma(a3.s1, b1.s3, acc33);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(float), src1_stride_y))
{
// Load values from matrix A
float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
// Multiply and accumulate
acc00 = fma(a0, b0.s0, acc00);
acc01 = fma(a0, b0.s1, acc01);
acc02 = fma(a0, b0.s2, acc02);
acc03 = fma(a0, b0.s3, acc03);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc10 = fma(a1, b0.s0, acc10);
acc11 = fma(a1, b0.s1, acc11);
acc12 = fma(a1, b0.s2, acc12);
acc13 = fma(a1, b0.s3, acc13);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc20 = fma(a2, b0.s0, acc20);
acc21 = fma(a2, b0.s1, acc21);
acc22 = fma(a2, b0.s2, acc22);
acc23 = fma(a2, b0.s3, acc23);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc30 = fma(a3, b0.s0, acc30);
acc31 = fma(a3, b0.s1, acc31);
acc32 = fma(a3, b0.s2, acc32);
acc33 = fma(a3, b0.s3, acc33);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Multiply by the weight of matrix-matrix product and store the result
#if defined(ALPHA)
acc00 = acc00 * ALPHA;
acc01 = acc01 * ALPHA;
acc02 = acc02 * ALPHA;
acc03 = acc03 * ALPHA;
#endif // defined(ALPHA)
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Add offset for batched GEMM
dst_addr += get_global_id(2) * dst_stride_z;
float4 acc0 = ((float4)(acc00, acc01, acc02, acc03));
vstore4(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if defined(ALPHA)
acc10 = acc10 * ALPHA;
acc11 = acc11 * ALPHA;
acc12 = acc12 * ALPHA;
acc13 = acc13 * ALPHA;
#endif // defined(ALPHA)
float4 acc1 = ((float4)(acc10, acc11, acc12, acc13));
vstore4(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if defined(ALPHA)
acc20 = acc20 * ALPHA;
acc21 = acc21 * ALPHA;
acc22 = acc22 * ALPHA;
acc23 = acc23 * ALPHA;
#endif // defined(ALPHA)
float4 acc2 = ((float4)(acc20, acc21, acc22, acc23));
vstore4(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if defined(ALPHA)
acc30 = acc30 * ALPHA;
acc31 = acc31 * ALPHA;
acc32 = acc32 * ALPHA;
acc33 = acc33 * ALPHA;
#endif // defined(ALPHA)
float4 acc3 = ((float4)(acc30, acc31, acc32, acc33));
vstore4(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not been reshaped
*
* @note This OpenCL kernel works with the 32-bit floating point data type (float) and uses the fma units.
* This OpenCL kernel is optimized for Bifrost when the number of matrix B columns is less or equal to 1000.
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
* This kernel optimally uses -DNUM_ELEMS_PROCESSED_PER_THREAD_X=2.
* @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
* @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha if alpha!=1.0f.
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16/F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_floating_point_f32_bifrost_1000(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
// Requires 2 NUM_ELEMS_PROCESSED_PER_THREAD_X, C vect2, A vect4, B (2 vload2) // to fix for NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
// Compute starting address for matrix A and Matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Update address for the matrix A
src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
// Update address for the matrix B
src_addr.s1 += idx * sizeof(float);
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
// For convolution layer we do not want to slide the matrix B along Z
src_addr.s1 += get_global_id(2) * src1_stride_z;
// Address boundary for the matrix A
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(float));
// Initialize accumulators
float acc00 = 0.0f;
float acc01 = 0.0f;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
float acc10 = 0.0f;
float acc11 = 0.0f;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
float acc20 = 0.0f;
float acc21 = 0.0f;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float acc30 = 0.0f;
float acc31 = 0.0f;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// A and B src indices get incremented at the same time.
for(; src_addr.s0 <= (end_row_vec_a - 4 * (int)sizeof(float)); src_addr += (int2)(4 * sizeof(float), 4 * src1_stride_y))
{
// Load values from matrix A
float4 a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
// Load values from matrix B
float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1 + 0 * src1_stride_y));
float2 b1 = vload2(0, (__global float *)(src1_ptr + src_addr.s1 + 1 * src1_stride_y));
float2 b2 = vload2(0, (__global float *)(src1_ptr + src_addr.s1 + 2 * src1_stride_y));
float2 b3 = vload2(0, (__global float *)(src1_ptr + src_addr.s1 + 3 * src1_stride_y));
// Multiply and accumulate
acc00 = fma(a0.s0, b0.s0, acc00);
acc00 = fma(a0.s1, b1.s0, acc00);
acc00 = fma(a0.s2, b2.s0, acc00);
acc00 = fma(a0.s3, b3.s0, acc00);
acc01 = fma(a0.s0, b0.s1, acc01);
acc01 = fma(a0.s1, b1.s1, acc01);
acc01 = fma(a0.s2, b2.s1, acc01);
acc01 = fma(a0.s3, b3.s1, acc01);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
acc10 = fma(a0.s0, b0.s0, acc10);
acc10 = fma(a0.s1, b1.s0, acc10);
acc10 = fma(a0.s2, b2.s0, acc10);
acc10 = fma(a0.s3, b3.s0, acc10);
acc11 = fma(a0.s0, b0.s1, acc11);
acc11 = fma(a0.s1, b1.s1, acc11);
acc11 = fma(a0.s2, b2.s1, acc11);
acc11 = fma(a0.s3, b3.s1, acc11);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
acc20 = fma(a0.s0, b0.s0, acc20);
acc20 = fma(a0.s1, b1.s0, acc20);
acc20 = fma(a0.s2, b2.s0, acc20);
acc20 = fma(a0.s3, b3.s0, acc20);
acc21 = fma(a0.s0, b0.s1, acc21);
acc21 = fma(a0.s1, b1.s1, acc21);
acc21 = fma(a0.s2, b2.s1, acc21);
acc21 = fma(a0.s3, b3.s1, acc21);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
a0 = vload4(0, (__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
acc30 = fma(a0.s0, b0.s0, acc30);
acc30 = fma(a0.s1, b1.s0, acc30);
acc30 = fma(a0.s2, b2.s0, acc30);
acc30 = fma(a0.s3, b3.s0, acc30);
acc31 = fma(a0.s0, b0.s1, acc31);
acc31 = fma(a0.s1, b1.s1, acc31);
acc31 = fma(a0.s2, b2.s1, acc31);
acc31 = fma(a0.s3, b3.s1, acc31);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
// float size increment
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(4, src1_stride_y))
{
// Load values from matrix A
float a0 = *((__global float *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
float a1 = *((__global float *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
float a2 = *((__global float *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
float a3 = *((__global float *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// Load values from matrix B
float2 b0 = vload2(0, (__global float *)(src1_ptr + src_addr.s1));
// Multiply and accumulate
acc00 = fma(a0, b0.s0, acc00);
acc01 = fma(a0, b0.s1, acc01);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc10 = fma(a1, b0.s0, acc10);
acc11 = fma(a1, b0.s1, acc11);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc20 = fma(a2, b0.s0, acc20);
acc21 = fma(a2, b0.s1, acc21);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc30 = fma(a3, b0.s0, acc30);
acc31 = fma(a3, b0.s1, acc31);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Add offset for batched GEMM
dst_addr += get_global_id(2) * dst_stride_z;
// Multiply by the weight of matrix-matrix product and store the result
#if defined(ALPHA)
acc00 = acc00 * ALPHA;
acc01 = acc01 * ALPHA;
#endif // defined(ALPHA)
float2 acc0 = ((float2)(acc00, acc01));
vstore2(acc0, 0, (__global float *)(dst_addr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if defined(ALPHA)
acc10 = acc10 * ALPHA;
acc11 = acc11 * ALPHA;
#endif // defined(ALPHA)
float2 acc1 = ((float2)(acc10, acc11));
vstore2(acc1, 0, (__global float *)(dst_addr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if defined(ALPHA)
acc20 = acc20 * ALPHA;
acc21 = acc21 * ALPHA;
#endif // defined(ALPHA)
float2 acc2 = ((float2)(acc20, acc21));
vstore2(acc2, 0, (__global float *)(dst_addr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
#if defined(ALPHA)
acc30 = acc30 * ALPHA;
acc31 = acc31 * ALPHA;
#endif // defined(ALPHA)
float2 acc3 = (float2)(acc30, acc31);
vstore2(acc3, 0, (__global float *)(dst_addr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#if defined(FIXED_POINT_POSITION)
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
* @note This OpenCL kernel works with fixed point data types QS8
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y
* @note The number matrix A columns, the number of elements processed per thread along the Y direction and the alpha's value need to be passed at compile time using -DCOLS_A, -DNUM_ELEMS_PROCESSED_PER_THREAD_Y and -DALPHA
* @note The fixed point position need to be passed at compile time using -DFIXED_POINT_POSITION
* @note The optional alpha value must be passed in 8 bit fixed point format using -DALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS8/QS16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_qs8(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
// Compute starting address for matrix A and Matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Update address for the matrix A
src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
// Update address for the matrix B
src_addr.s1 += idx * sizeof(char);
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
src_addr.s1 += get_global_id(2) * src1_stride_z;
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(char));
short8 acc00 = 0;
short8 acc01 = 0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
short8 acc10 = 0;
short8 acc11 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
short8 acc20 = 0;
short8 acc21 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
short8 acc30 = 0;
short8 acc31 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// This for loop performs 4 accumulations per iteration
for(; src_addr.s0 <= (end_row_vec_a - 2); src_addr += (int2)(2, 2 * src1_stride_y))
{
char2 a0 = vload2(0, (__global char *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
char2 a1 = vload2(0, (__global char *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
char2 a2 = vload2(0, (__global char *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
char2 a3 = vload2(0, (__global char *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
char16 b0 = vload16(0, (__global char *)(src1_ptr + src_addr.s1 + 0 * src1_stride_y));
char16 b1 = vload16(0, (__global char *)(src1_ptr + src_addr.s1 + 1 * src1_stride_y));
acc00 = mlal_sat_qs8x8(acc00, (char8)a0.s0, b0.s01234567, FIXED_POINT_POSITION);
acc00 = mlal_sat_qs8x8(acc00, (char8)a0.s1, b1.s01234567, FIXED_POINT_POSITION);
acc01 = mlal_sat_qs8x8(acc01, (char8)a0.s0, b0.s89ABCDEF, FIXED_POINT_POSITION);
acc01 = mlal_sat_qs8x8(acc01, (char8)a0.s1, b1.s89ABCDEF, FIXED_POINT_POSITION);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc10 = mlal_sat_qs8x8(acc10, (char8)a1.s0, b0.s01234567, FIXED_POINT_POSITION);
acc10 = mlal_sat_qs8x8(acc10, (char8)a1.s1, b1.s01234567, FIXED_POINT_POSITION);
acc11 = mlal_sat_qs8x8(acc11, (char8)a1.s0, b0.s89ABCDEF, FIXED_POINT_POSITION);
acc11 = mlal_sat_qs8x8(acc11, (char8)a1.s1, b1.s89ABCDEF, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc20 = mlal_sat_qs8x8(acc20, (char8)a2.s0, b0.s01234567, FIXED_POINT_POSITION);
acc20 = mlal_sat_qs8x8(acc20, (char8)a2.s1, b1.s01234567, FIXED_POINT_POSITION);
acc21 = mlal_sat_qs8x8(acc21, (char8)a2.s0, b0.s89ABCDEF, FIXED_POINT_POSITION);
acc21 = mlal_sat_qs8x8(acc21, (char8)a2.s1, b1.s89ABCDEF, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc30 = mlal_sat_qs8x8(acc30, (char8)a3.s0, b0.s01234567, FIXED_POINT_POSITION);
acc30 = mlal_sat_qs8x8(acc30, (char8)a3.s1, b1.s01234567, FIXED_POINT_POSITION);
acc31 = mlal_sat_qs8x8(acc31, (char8)a3.s0, b0.s89ABCDEF, FIXED_POINT_POSITION);
acc31 = mlal_sat_qs8x8(acc31, (char8)a3.s1, b1.s89ABCDEF, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
// Left-over accumulations
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(1, src1_stride_y))
{
char a0 = *((__global char *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
char a1 = *((__global char *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
char a2 = *((__global char *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
char a3 = *((__global char *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
char16 b0 = vload16(0, (__global char *)(src1_ptr + src_addr.s1));
acc00 = mlal_sat_qs8x8(acc00, (char8)a0, b0.s01234567, FIXED_POINT_POSITION);
acc01 = mlal_sat_qs8x8(acc01, (char8)a0, b0.s89ABCDEF, FIXED_POINT_POSITION);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc10 = mlal_sat_qs8x8(acc10, (char8)a1, b0.s01234567, FIXED_POINT_POSITION);
acc11 = mlal_sat_qs8x8(acc11, (char8)a1, b0.s89ABCDEF, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc20 = mlal_sat_qs8x8(acc20, (char8)a2, b0.s01234567, FIXED_POINT_POSITION);
acc21 = mlal_sat_qs8x8(acc21, (char8)a2, b0.s89ABCDEF, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc30 = mlal_sat_qs8x8(acc30, (char8)a3, b0.s01234567, FIXED_POINT_POSITION);
acc31 = mlal_sat_qs8x8(acc31, (char8)a3, b0.s89ABCDEF, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Add offset for batched GEMM
dst_addr += get_global_id(2) * dst_stride_z;
// Multiply by the weight of matrix product and store the result
char16 acc_qs8;
acc_qs8 = convert_char16_sat((short16)(acc00, acc01));
#if defined(ALPHA)
acc_qs8 = mul_sat_qs8x16(acc_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
vstore16(acc_qs8, 0, (__global char *)(dst_addr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc_qs8 = convert_char16_sat((short16)(acc10, acc11));
#if defined(ALPHA)
acc_qs8 = mul_sat_qs8x16(acc_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
vstore16(acc_qs8, 0, (__global char *)(dst_addr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc_qs8 = convert_char16_sat((short16)(acc20, acc21));
#if defined(ALPHA)
acc_qs8 = mul_sat_qs8x16(acc_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
vstore16(acc_qs8, 0, (__global char *)(dst_addr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc_qs8 = convert_char16_sat((short16)(acc30, acc31));
#if defined(ALPHA)
acc_qs8 = mul_sat_qs8x16(acc_qs8, (char16)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
vstore16(acc_qs8, 0, (__global char *)(dst_addr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
/** This OpenCL kernel computes the matrix by matrix multiplication between the matrix A (src0) and matrix B (src1) in case both matrices have not beed reshaped
*
* @note This OpenCL kernel works with fixed point data types QS16
* @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y
* @note The number of matrix A columns, the number of elements processed per thread along the Y direction and the alpha's value need to be passed at compile time using -DCOLS_A, -DNUM_ELEMS_PROCESSED_PER_THREAD_Y and -DALPHA
* @note The fixed point position need to be passed at compile time using -DFIXED_POINT_POSITION
* @note The optional alpha value must be passed in 16 bit fixed point format using -DALPHA
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: QS8/QS16
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_mm_qs16(IMAGE_DECLARATION(src0),
IMAGE_DECLARATION(src1),
IMAGE_DECLARATION(dst),
uint src0_stride_z,
uint src1_stride_z,
uint dst_stride_z)
{
int idx = get_global_id(0) * NUM_ELEMS_PROCESSED_PER_THREAD_X;
// Compute starting address for matrix A and Matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes, src1_offset_first_element_in_bytes));
// Update address for the matrix A
src_addr.s0 += get_global_id(1) * src0_stride_y * NUM_ELEMS_PROCESSED_PER_THREAD_Y;
// Update address for the matrix B
src_addr.s1 += idx * sizeof(short);
// Add offset for batched GEMM
src_addr.s0 += get_global_id(2) * src0_stride_z;
src_addr.s1 += get_global_id(2) * src1_stride_z;
int end_row_vec_a = src_addr.s0 + (COLS_A * sizeof(short));
int8 acc0 = 0;
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
int8 acc1 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
int8 acc2 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
int8 acc3 = 0;
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
// This for loop performs 4 accumulations per iteration
for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(short)); src_addr += (int2)(2 * sizeof(short), 2 * src1_stride_y))
{
short2 a0 = vload2(0, (__global short *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
short2 a1 = vload2(0, (__global short *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
short2 a2 = vload2(0, (__global short *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
short2 a3 = vload2(0, (__global short *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
short8 b0 = vload8(0, (__global short *)(src1_ptr + src_addr.s1 + 0 * src1_stride_y));
short8 b1 = vload8(0, (__global short *)(src1_ptr + src_addr.s1 + 1 * src1_stride_y));
acc0 = mlal_sat_qs16x8(acc0, (short8)a0.s0, b0, FIXED_POINT_POSITION);
acc0 = mlal_sat_qs16x8(acc0, (short8)a0.s1, b1, FIXED_POINT_POSITION);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 = mlal_sat_qs16x8(acc1, (short8)a1.s0, b0, FIXED_POINT_POSITION);
acc1 = mlal_sat_qs16x8(acc1, (short8)a1.s1, b1, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 = mlal_sat_qs16x8(acc2, (short8)a2.s0, b0, FIXED_POINT_POSITION);
acc2 = mlal_sat_qs16x8(acc2, (short8)a2.s1, b1, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 = mlal_sat_qs16x8(acc3, (short8)a3.s0, b0, FIXED_POINT_POSITION);
acc3 = mlal_sat_qs16x8(acc3, (short8)a3.s1, b1, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
// Left-over accumulations
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(short), src1_stride_y))
{
short a0 = *((__global short *)(src0_ptr + src_addr.s0 + 0 * src0_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
short a1 = *((__global short *)(src0_ptr + src_addr.s0 + 1 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
short a2 = *((__global short *)(src0_ptr + src_addr.s0 + 2 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
short a3 = *((__global short *)(src0_ptr + src_addr.s0 + 3 * src0_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
short8 b0 = vload8(0, (__global short *)(src1_ptr + src_addr.s1));
acc0 = mlal_sat_qs16x8(acc0, (short8)a0, b0, FIXED_POINT_POSITION);
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc1 = mlal_sat_qs16x8(acc1, (short8)a1, b0, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc2 = mlal_sat_qs16x8(acc2, (short8)a2, b0, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc3 = mlal_sat_qs16x8(acc3, (short8)a3, b0, FIXED_POINT_POSITION);
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Compute dst address
__global uchar *dst_addr = offset(&dst, 0, 0);
// Multiply by the weight of matrix product and store the result
short8 acc_qs16;
acc_qs16 = convert_short8_sat(acc0);
#if defined(ALPHA)
acc_qs16 = mul_sat_qs16x8(acc_qs16, (short8)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
vstore8(acc_qs16, 0, (__global short *)(dst_addr + 0 * dst_stride_y));
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
acc_qs16 = convert_short8_sat(acc1);
#if defined(ALPHA)
acc_qs16 = mul_sat_qs16x8(acc_qs16, (short8)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
vstore8(acc_qs16, 0, (__global short *)(dst_addr + 1 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
acc_qs16 = convert_short8_sat(acc2);
#if defined(ALPHA)
acc_qs16 = mul_sat_qs16x8(acc_qs16, (short8)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
vstore8(acc_qs16, 0, (__global short *)(dst_addr + 2 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
acc_qs16 = convert_short8_sat(acc3);
#if defined(ALPHA)
acc_qs16 = mul_sat_qs16x8(acc_qs16, (short8)ALPHA, FIXED_POINT_POSITION);
#endif // defined(ALPHA)
vstore8(acc_qs16, 0, (__global short *)(dst_addr + 3 * dst_stride_y));
#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
}
#endif // defined(FIXED_POINT_POSITION)
#endif // defined(COLS_A) && defined(NUM_ELEMS_PROCESSED_PER_THREAD_X) && (NUM_ELEMS_PROCESSED_PER_THREAD_Y)
#if defined(BETA)
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
* @note The beta's value need to be passed at compile time using -DBETA
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_ma_f32(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
// Compute source and destination addresses
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Load values from A x B
float4 alpha_ab = vload4(0, (__global float *)dst.ptr);
// Load values from Matrix C
float4 c = vload4(0, (__global float *)src.ptr);
// Computes alpha * axb + beta * c
float4 out = alpha_ab + (float4)BETA * c;
// Store final result in axb matrix
vstore4(out, 0, (__global float *)dst.ptr);
}
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
*
* @note The beta's value need to be passed at compile time using -DBETA
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_ma_f16(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
// Compute source and destination addresses
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Load values from A x B
half8 alpha_ab = vload8(0, (__global half *)dst.ptr);
// Load values from Matrix C
half8 c = vload8(0, (__global half *)src.ptr);
// Computes alpha * axb + beta * c
half8 out = alpha_ab + (half8)BETA * c;
// Store final result in axb matrix
vstore8(out, 0, (__global half *)dst.ptr);
}
#if defined(FIXED_POINT_POSITION)
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices in 8 bit fixed point taking into account that the second matrix might be weighted by a scalar value beta:
*
* @note The beta's value and the fixed point position need to be passed at compile time using -DBETA and -DFIXED_POINT_POSITION
*
* @note: BETA must be passed in 8 bit fixed point format
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: QS8
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_ma_qs8(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
// Compute source and destination addresses
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Load values from A x B
char16 alpha_ab = vload16(0, (__global char *)dst.ptr);
// Load values from Matrix C
char16 c = vload16(0, (__global char *)src.ptr);
// Computes alpha * axb + beta * c
char16 out = mla_sat_qs8x16(alpha_ab, (char16)BETA, c, FIXED_POINT_POSITION);
// Store final result in axb matrix
vstore16(out, 0, (__global char *)dst.ptr);
}
/** This OpenCL kernel performs the in-place matrix addition between 2 matrices in 16 bit fixed point taking into account that the second matrix might be weighted by a scalar value beta:
*
* @note The beta's value and the fixed point position need to be passed at compile time using -DBETA and -DFIXED_POINT_POSITION
*
* @note: BETA must be passed in 16 bit fixed point format
*
* @param[in] src_ptr Pointer to the source matrix. Supported data types: QS16
* @param[in] src_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_ma_qs16(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
// Compute source and destination addresses
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Load values from A x B
short8 alpha_ab = vload8(0, (__global short *)dst.ptr);
// Load values from Matrix C
short8 c = vload8(0, (__global short *)src.ptr);
// Computes alpha * axb + beta * c
short8 out = mla_sat_qs16x8(alpha_ab, (short8)BETA, c, FIXED_POINT_POSITION);
// Store final result in axb matrix
vstore8(out, 0, (__global short *)dst.ptr);
}
#endif // defined(FIXED_POINT_POSITION)
#endif // defined(BETA)
#if defined(WIDTH_VECTOR_A)
/** This OpenCL kernel computes the vector by matrix multiplication between each row of A (src0) and matrix B (src1) used for locally connected layer
*
* @note The width of A need to be passed at compile time using -DWIDTH_VECTOR_A
*
* @note The input A and matrix B must not be reshaped
*
* @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
* @param[in] src0_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src0_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src0_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src0_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src0_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
* @param[in] src1_stride_x Stride of the source matrix in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source matrix in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_stride_z Stride of the source matrix in Z dimension (in bytes)
* @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source matrix
* @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
* @param[in] dst_stride_x Stride of the destination matrix in X dimension (in bytes)
* @param[in] dst_step_x dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination matrix in Y dimension (in bytes)
* @param[in] dst_step_y dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
*/
__kernel void gemm_lc_vm_f32(IMAGE_DECLARATION(src0),
TENSOR3D_DECLARATION(src1),
IMAGE_DECLARATION(dst))
{
int idx = get_global_id(0) * 4;
int idy = get_global_id(1);
// Compute the address for the vector A and matrix B
int2 src_addr = ((int2)(src0_offset_first_element_in_bytes + src0_stride_y * idy, src1_offset_first_element_in_bytes + src1_stride_z * idy));
src_addr.s1 += idx * sizeof(float);
int end_row_vec_a = src_addr.s0 + (WIDTH_VECTOR_A * sizeof(float));
float4 acc = 0.0f;
for(; src_addr.s0 <= (end_row_vec_a - 2 * (int)sizeof(float)); src_addr += (int2)(2 * sizeof(float), 2 * src1_stride_y))
{
float2 a0 = vload2(0, (__global float *)(src0_ptr + src_addr.s0));
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
float4 b1 = vload4(0, (__global float *)(src1_ptr + src_addr.s1 + src1_stride_y));
acc += b0 * (float4)a0.s0;
acc += b1 * (float4)a0.s1;
}
for(; src_addr.s0 < end_row_vec_a; src_addr += (int2)(sizeof(float), src1_stride_y))
{
float a0 = *((__global float *)(src0_ptr + src_addr.s0));
float4 b0 = vload4(0, (__global float *)(src1_ptr + src_addr.s1));
acc += b0 * (float4)a0;
}
// Compute destination address
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
vstore4(acc, 0, (__global float *)(offset(&dst, 0, 0)));
}
#endif // defined(WIDTH_VECTOR_A)
/** This kernel accumulates each row with the biases vector.
*
* @note The data type must be passed at compile time using -DDATA_TYPE e.g. -DDATA_TYPE=short.
* @note The vector size must be passed at compile time using -DVECTOR_SIZE e.g. -DVECTOR_SIZE=16.
*
* @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: U8/S8/QS8/U16/S16/F16/U32/S32/F32
* @param[in] accum_stride_x Stride of the accmulate tensor in X dimension (in bytes)
* @param[in] accum_step_x accum_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] accum_stride_y Stride of the accumlulate tensor in Y dimension (in bytes)
* @param[in] accum_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] accum_offset_first_element_in_bytes The offset of the first element in the accumulate tensor
* @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
* @param[in] biases_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] biases_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
#if defined(DATA_TYPE) && defined(VECTOR_SIZE)
__kernel void gemm_accumulate_biases(
IMAGE_DECLARATION(accum),
VECTOR_DECLARATION(biases))
{
Image accum = CONVERT_TO_IMAGE_STRUCT(accum);
Vector biases = CONVERT_TO_VECTOR_STRUCT(biases);
// Vector size, i.e. number of vector elements.
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
accum_value = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)accum.ptr);
VEC_DATA_TYPE(DATA_TYPE, VECTOR_SIZE)
biases_value = VLOAD(VECTOR_SIZE)(0, (__global DATA_TYPE *)biases.ptr);
#ifdef FIXED_POINT_POSITION
accum_value = ADD_SAT_OP_EXPAND(biases_value, accum_value, DATA_TYPE, VECTOR_SIZE);
#else // FIXED_POINT_POSITION
accum_value = biases_value + accum_value;
#endif // FIXED_POINT_POSITION
// Store result in the accumulate buffer
VSTORE(VECTOR_SIZE)
(accum_value, 0, (__global DATA_TYPE *)accum.ptr);
}
#endif // defined(DATA_TYPE) && defined(VECTOR_SIZE)