blob: 6655d12d7e9157c0a223263c6297bc8fdf1a0802 [file] [log] [blame]
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
#include "arm_compute/core/AccessWindowStatic.h"
#include "arm_compute/core/AccessWindowTranspose.h"
#include "arm_compute/core/CL/CLHelpers.h"
#include "arm_compute/core/CL/CLKernelLibrary.h"
#include "arm_compute/core/CL/ICLTensor.h"
#include "arm_compute/core/CL/OpenCL.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/FixedPoint.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include <set>
#include <string>
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
namespace
{
using ElementsProcessed = Steps;
inline Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input0, input1, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, input1);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input0, input1);
if(!is_interleaved_transposed)
{
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(0) != input1->dimension(1));
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(input1->dimension(0) != output->dimension(0));
ARM_COMPUTE_RETURN_ERROR_ON(input0->dimension(1) != output->dimension(1));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input0, output);
}
}
else
{
const int m = reshape_info.m();
const int n = reshape_info.n();
const int k = reshape_info.k();
const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
TensorShape tensor_shape0{ input0->tensor_shape() };
tensor_shape0.set(0, k);
tensor_shape0.set(1, m);
TensorShape tensor_shape1{ input1->tensor_shape() };
tensor_shape1.set(0, n);
tensor_shape1.set(1, k);
const TensorInfo tensor_info0 = input0->clone()->set_tensor_shape(tensor_shape0);
const TensorInfo tensor_info1 = input1->clone()->set_tensor_shape(tensor_shape1);
const TensorInfo tensor_info_reshaped0 = input0->clone()->set_tensor_shape(compute_interleaved_shape(tensor_info0, mult_interleave4x4_height));
const TensorInfo tensor_info_reshaped1 = input1->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(tensor_info1, mult_transpose1xW_width));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input0, &tensor_info_reshaped0);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input1, &tensor_info_reshaped1);
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(0) != static_cast<size_t>(n));
ARM_COMPUTE_RETURN_ERROR_ON(output->dimension(1) != static_cast<size_t>(m));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input0, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input0, output);
}
}
return Status{};
}
inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input0, ITensorInfo *input1, ITensorInfo *output,
bool is_interleaved_transposed, GPUTarget gpu_target,
ElementsProcessed &num_elements_processed)
{
bool window_changed = false;
Window win{};
const DataType data_type = input0->data_type();
unsigned int &num_elems_processed_per_iteration_x = num_elements_processed[0];
unsigned int &num_elems_processed_per_iteration_y = num_elements_processed[1];
if(is_interleaved_transposed)
{
// Configure kernel window
num_elems_processed_per_iteration_x = max_cl_vector_width / data_size_from_type(data_type);
num_elems_processed_per_iteration_y = 4;
win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowRectangle input0_access(input0, 0, 0, num_elems_processed_per_iteration_y, 1, 1.f, 0.25f);
AccessWindowTranspose input1_access(input1, 0, 0, num_elems_processed_per_iteration_x, 1, 0.f, 0.25f);
AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
window_changed = update_window_and_padding(win, input0_access, input1_access, output_access);
output_access.set_valid_region(win, ValidRegion(Coordinates(0, 0), output->tensor_shape()));
}
else // The input tensors have not been reshaped
{
// Special case for 1xN, 2xN, 3xN and 4xN input0 tensor. num_elems_processed_per_iteration_x is set up for the default case.
num_elems_processed_per_iteration_x = max_cl_vector_width / data_size_from_type(data_type);
num_elems_processed_per_iteration_y = std::min(static_cast<int>(output->dimension(1)), 4);
// Create kernels according to the architecture, data type and input size.
if(gpu_target == GPUTarget::BIFROST && data_type == DataType::F32)
{
num_elems_processed_per_iteration_x = (input1->dimension(0) <= 1000 && input0->num_dimensions() == 1) ? 2 : 4;
}
// Configure window
win = calculate_max_window(*output, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
AccessWindowStatic input0_access(input0, 0, 0, input0->dimension(0), ceil_to_multiple(input0->dimension(1), num_elems_processed_per_iteration_y));
AccessWindowStatic input1_access(input1, 0, 0, ceil_to_multiple(input1->dimension(0), num_elems_processed_per_iteration_x), input1->dimension(1));
AccessWindowRectangle output_access(output, 0, 0, num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y);
window_changed = update_window_and_padding(win, input0_access, input1_access, output_access);
Coordinates coord;
coord.set_num_dimensions(output->num_dimensions());
output_access.set_valid_region(win, ValidRegion(coord, output->tensor_shape()));
}
// Collapse along the Z direction
// This collapse needs to be here in order to tune the Z dimension of LWS
Window collapsed = win;
if(input1->num_dimensions() > 1)
{
const unsigned int dimension_to_collapse = std::min(static_cast<unsigned int>(input1->num_dimensions() - 1), 2u);
collapsed = win.collapse(win, dimension_to_collapse);
}
Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
return std::make_pair(err, collapsed);
}
} // namespace
CLGEMMMatrixMultiplyKernel::CLGEMMMatrixMultiplyKernel()
: _input0(nullptr), _input1(nullptr), _output(nullptr)
{
}
void CLGEMMMatrixMultiplyKernel::configure(const ICLTensor *input0, const ICLTensor *input1, ICLTensor *output, float alpha, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
// Output tensor auto inizialitation if not yet initialized
TensorShape tensor_shape{ input0->info()->tensor_shape() };
tensor_shape.set(0, is_interleaved_transposed ? reshape_info.n() : input1->info()->dimension(0));
tensor_shape.set(1, is_interleaved_transposed ? reshape_info.m() : input0->info()->dimension(1));
auto_init_if_empty(*output->info(), input0->info()->clone()->set_tensor_shape(tensor_shape));
// Perform validate step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info(), is_interleaved_transposed, reshape_info));
_input0 = input0;
_input1 = input1;
_output = output;
const DataType data_type = input0->info()->data_type();
const int fp_pos = input0->info()->fixed_point_position();
// Get target architecture
GPUTarget arch_target = get_arch_from_target(get_target());
// Configure LWS hint
if(arch_target == GPUTarget::BIFROST && input1->info()->dimension(1) == 24)
{
// LWS optimized for the 11x11 AlexNet convolution on Bifrost.
_lws_hint = cl::NDRange(2, 2);
}
else if(output->info()->dimension(1) == 196)
{
_lws_hint = cl::NDRange(1, 7);
}
else
{
_lws_hint = cl::NDRange(8, 8);
}
ElementsProcessed num_elements_processed{};
// Configure kernel window
auto win_config = validate_and_configure_window(input0->info(), input1->info(), output->info(), is_interleaved_transposed, arch_target, num_elements_processed);
ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
ICLKernel::configure(win_config.second);
// Create build options
CLBuildOptions build_opts;
build_opts.add_option_if(is_data_type_fixed_point(data_type), "-DFIXED_POINT_POSITION=" + support::cpp11::to_string(fp_pos));
// Only define ALPHA when alpha is not 1.0f. This avoids performing unnecessary multiplications.
if(std::abs(1.0f - alpha) > 0.00001f)
{
build_opts.add_option_if_else(is_data_type_fixed_point(data_type),
"-DALPHA=" + support::cpp11::to_string((data_type == DataType::QS8 ? sqcvt_qs8_f32(alpha, fp_pos) : sqcvt_qs16_f32(alpha, fp_pos))),
"-DALPHA=" + float_to_string_with_full_precision(alpha));
}
std::string kernel_name;
if(is_interleaved_transposed)
{
const int mult_transpose1xW_width = reshape_info.mult_transpose1xW_width();
const int mult_interleave4x4_height = reshape_info.mult_interleave4x4_height();
build_opts.add_option("-DCOLS_B=" + support::cpp11::to_string(input1->info()->dimension(0)));
build_opts.add_option("-DMULT_TRANSPOSE1XW_WIDTH=" + support::cpp11::to_string(mult_transpose1xW_width));
build_opts.add_option("-DMULT_INTERLEAVE4X4_HEIGHT=" + support::cpp11::to_string(mult_interleave4x4_height));
if(data_type == DataType::F32)
{
kernel_name = "gemm_mm_interleaved_transposed_f32_" + string_from_target(arch_target);
}
else
{
kernel_name = "gemm_mm_interleaved_transposed_" + lower_string(string_from_data_type(data_type));
}
}
else // The input tensors have not been reshaped
{
build_opts.add_option("-DCOLS_A=" + support::cpp11::to_string(input0->info()->dimension(0)));
// Create kernels according to the architecture, data type and input size.
if(arch_target == GPUTarget::BIFROST && data_type == DataType::F32)
{
// The first kernel is optimized for the case of 1000 or less output elements (e.g. FC8 of AlexNet and VGG-16, and
// FC1 of Inception v3). The second kernel is optimized for the case of greater than 1000 output elements (e.g.
// FC6 and FC7 of AlexNet and VGG-16).
kernel_name = (input1->info()->dimension(0) <= 1000 && input0->info()->num_dimensions() == 1) ? "gemm_mm_floating_point_f32_bifrost_1000" : "gemm_mm_floating_point_f32_bifrost";
// The work-group size equal to the Bifrost quad size has been proved to be optimal for these kernels
// via exhaustive autotuning over a range of representative layer configurations.
_lws_hint = cl::NDRange(4);
}
else if(is_data_type_fixed_point(data_type))
{
kernel_name = "gemm_mm_" + lower_string(string_from_data_type(data_type));
}
else // (MIDGARD and F32) or (F16)
{
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(data_type));
kernel_name = "gemm_mm_floating_point";
}
build_opts.add_option("-DNUM_ELEMS_PROCESSED_PER_THREAD_Y=" + support::cpp11::to_string(num_elements_processed.y()));
build_opts.add_option("-DNUM_ELEMS_PROCESSED_PER_THREAD_X=" + support::cpp11::to_string(num_elements_processed.x()));
}
// Create kernel
_kernel = static_cast<cl::Kernel>(CLKernelLibrary::get().create_kernel(kernel_name, build_opts.options()));
// Set config_id for enabling LWS tuning
_config_id = "gemm_";
_config_id += (is_interleaved_transposed ? "reshaped_" : "");
_config_id += lower_string(string_from_data_type(input0->info()->data_type()));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(1));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(0));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(2));
_config_id += "_";
_config_id += support::cpp11::to_string(output->info()->dimension(3));
_config_id += "_";
_config_id += (is_interleaved_transposed ? support::cpp11::to_string(input1->info()->dimension(0)) : support::cpp11::to_string(input1->info()->dimension(1)));
}
Status CLGEMMMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output, float alpha, bool is_interleaved_transposed,
const GEMMReshapeInfo &reshape_info, GPUTarget gpu_target)
{
// Note: num_elements_processed will be set in validate_and_configure_window()
ElementsProcessed num_elements_processed{};
ARM_COMPUTE_UNUSED(alpha);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output, is_interleaved_transposed, reshape_info));
ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input0->clone().get(),
input1->clone().get(),
output->clone().get(),
is_interleaved_transposed,
gpu_target,
num_elements_processed)
.first);
return Status{};
}
void CLGEMMMatrixMultiplyKernel::run(const Window &window, cl::CommandQueue &queue)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICLKernel::window(), window);
if(_input1->info()->num_dimensions() < 3)
{
// The stride_z for matrix B must be zero if we do not slice
ARM_COMPUTE_ERROR_ON(_input1->info()->strides_in_bytes()[3] != 0);
}
Window slice = window.first_slice_window_3D();
Window slice_matrix_b = slice;
slice_matrix_b.set(Window::DimX, Window::Dimension(0, 1, 1));
slice_matrix_b.set(Window::DimY, Window::Dimension(0, 1, 1));
do
{
Window slice_b = slice;
// Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
// This scenario can happen when the matrix multiplication is used to perform a convolution operation
if(_input1->info()->num_dimensions() < 3)
{
slice_b = slice_matrix_b;
}
unsigned int idx = 0;
add_2D_tensor_argument(idx, _input0, slice);
add_2D_tensor_argument(idx, _input1, slice_b);
add_2D_tensor_argument(idx, _output, slice);
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input0->info()->strides_in_bytes()[3]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_input1->info()->strides_in_bytes()[3]));
_kernel.setArg<cl_uint>(idx++, static_cast<unsigned int>(_output->info()->strides_in_bytes()[3]));
enqueue(queue, *this, slice, _lws_hint);
}
while(window.slide_window_slice_3D(slice));
}