blob: e3f151a2ca6af81bc6e03c5feb1cbde3067bdeab [file] [log] [blame]
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/CL/CLTensor.h"
#include "arm_compute/runtime/CL/CLTensorAllocator.h"
#include "src/gpu/cl/kernels/ClGemmMatrixMultiplyNativeKernel.h"
#include "tests/CL/CLAccessor.h"
#include "tests/CL/Helper.h"
#include "tests/PaddingCalculator.h"
#include "tests/datasets/ShapeDatasets.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/GEMMFixture.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::misc::shape_calculator;
using namespace arm_compute::opencl::kernels;
// Create function for ClGemmMatrixMultiplyNativeKernel
using CLGEMMMatrixMultiplyNative = CLSynthetizeOperator<ClGemmMatrixMultiplyNativeKernel>;
// Fixture for CLGEMMMatrixMultiplyNative
template <typename T>
using CLGEMMMatrixMultiplyNativeFixture = GEMMMatrixMultiplyNativeValidationFixture<CLTensor, CLAccessor, T, CLGEMMMatrixMultiplyNative>;
// Fixture for CLGEMMMatrixMultiplyNative with post ops
template <typename T>
using CLGEMMMatrixMultiplyNativeWithPostOpsFixture =
GEMMMatrixMultiplyNativeWithPostOpsValidationFixture<CLTensor, CLAccessor, T, CLGEMMMatrixMultiplyNative>;
// Fixture for CLGEMMMatrixMultiplyNative3D
template <typename T>
using CLGEMMMatrixMultiplyNative3DFixture = GEMMMatrixMultiplyNative3DValidationFixture<CLTensor, CLAccessor, T, CLGEMMMatrixMultiplyNative>;
namespace
{
// *INDENT-OFF*
// clang-format off
RelativeTolerance<float> rel_tolerance_f32(0.001f);
constexpr float abs_tolerance_f32(0.0001f);
/** Alpha values to test - Precommit */
const auto a_values = framework::dataset::make("alpha", {1.0f, -0.75f} );
/** Beta values to test - Precommit */
const auto beta_values = framework::dataset::make("beta", {-0.75f, 0.0f} );
/** M values to test */
const auto m_values = framework::dataset::make("M", 37);
/** M_W values to test */
const auto m_w_values = framework::dataset::make("M_W", 5);
/** M_H values to test */
const auto m_h_values = framework::dataset::make("M_H", 7);
/** N values to test */
const auto n_values = framework::dataset::make("N", 51);
/** K values to test */
const auto k_values = framework::dataset::make("K", 23);
/** Batch size values to test */
const auto b_values = framework::dataset::make("batch_size", 1, 3);
/** Activation values to test */
const auto act_values = framework::dataset::make("Activation",
{
ActivationLayerInfo(),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 8.f, 2.f),
});
/** M0 values to test - Precommit */
const auto m0_values_precommit = framework::dataset::make("M0", { 4, 6 });
/** N0 values to test - Precommit */
const auto n0_values_precommit = framework::dataset::make("N0", { 4 });
/** K0 values to test - Precommit */
const auto k0_values_precommit = framework::dataset::make("K0", { 4 });
/** H0 values to test - Precommit */
const auto h0_values_precommit = framework::dataset::make("H0", 1, 3);
/** M0 values to test - Nightly */
const auto m0_values_nightly = framework::dataset::make("M0", 1, 8);
/** N0 values to test - Nightly */
const auto n0_values_nightly = framework::dataset::make("N0", { 2, 3, 4, 8 });
/** K0 values to test - Nightly */
const auto k0_values_nightly = framework::dataset::make("K0", { 2, 3, 4, 8 });
/** Broadcast bias from vector to matrix */
const auto broadcast_bias_values = framework::dataset::make("broadcast_bias", { false, true } );
/** Boundary handling cases for testing partial/non-partial (full) block dimensions, resulting from different combinations
* of M, M0, N and N0 values.
* M0 and N0 are kept constant, while the different test cases need to vary M and N.
*
* Eg. M = 64 and N = 33 result in a block dimension that has no partial blocks (all full blocks) in Y dimension and
* parital blocks in X dimension.
*/
const auto boundary_handling_cases = combine(combine(combine(combine(combine(combine(combine(combine(combine(
// Large k to force potential out-of-bound reads on input0
framework::dataset::make("K", 315),
// Batch size == 1 to force potential out-of-bound reads on input0
framework::dataset::make("batch_size", 1)),
framework::dataset::make("M0", 4)),
framework::dataset::make("N0", 4)),
framework::dataset::make("K0", 4)),
// Only need to test F32 as F16 shares identical boundary handling logics
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("alpha", -0.75f )),
framework::dataset::make("beta", -0.35f )),
broadcast_bias_values),
framework::dataset::make("Activation", ActivationLayerInfo()));
/** Post Ops */
using PostOpArgBroadcast = CLGEMMMatrixMultiplyNativeWithPostOpsFixture<float>::PostOpArgBroadcast;
experimental::PostOpList<PostOpArgBroadcast> post_ops_1()
{
experimental::PostOpList<PostOpArgBroadcast> post_ops{};
post_ops.push_back_op<experimental::PostOpAct<PostOpArgBroadcast>>(ActivationLayerInfo{ActivationLayerInfo::ActivationFunction::LINEAR, 0.5F, 0.0F});
post_ops.push_back_op<experimental::PostOpEltwiseAdd<PostOpArgBroadcast>>(
std::make_tuple(true, true, false), // If broadcast in dims 0, 1 and 2
0,
ConvertPolicy::SATURATE);
post_ops.push_back_op<experimental::PostOpAct<PostOpArgBroadcast>>(ActivationLayerInfo{ActivationLayerInfo::ActivationFunction::RELU, 2.1F, 1.3F});
return post_ops;
}
experimental::PostOpList<PostOpArgBroadcast> post_ops_2()
{
experimental::PostOpList<PostOpArgBroadcast> post_ops{};
post_ops.push_back_op<experimental::PostOpEltwiseAdd<PostOpArgBroadcast>>(
std::make_tuple(false, true, true), // If broadcast in dims 0, 1 and 2
1,
ConvertPolicy::SATURATE);
post_ops.push_back_op<experimental::PostOpAct<PostOpArgBroadcast>>(ActivationLayerInfo{ActivationLayerInfo::ActivationFunction::RELU, 2.1F, 1.3F});
return post_ops;
}
experimental::PostOpList<PostOpArgBroadcast> post_ops_3()
{
experimental::PostOpList<PostOpArgBroadcast> post_ops{};
// post_ops.push_back_op<experimental::PostOpAct<PostOpArgBroadcast>>(ActivationLayerInfo{ActivationLayerInfo::ActivationFunction::RELU, 2.1F, 1.3F});
post_ops.push_back_op<experimental::PostOpEltwiseAdd<PostOpArgBroadcast>>(
std::make_tuple(false, false, false), // If broadcast in dims 0, 1 and 2
1,
ConvertPolicy::SATURATE);
return post_ops;
}
/** Different Post Op Lists */
const auto post_op_lists = framework::dataset::make("post_op_lists", {
post_ops_1(),
post_ops_2(),
post_ops_3(),
} );
bool is_post_op_list_valid(unsigned int m, unsigned int n, unsigned int k, unsigned int batch, DataType data_type, const experimental::PostOpList<ITensorInfo*>& post_ops)
{
const auto lhs_info = GEMMLHSMatrixInfo(4,4,1,false,true);
const auto rhs_info = GEMMRHSMatrixInfo(4,4,1,true,true,false);
// Create TensorInfo for post op arguments
TensorInfo input0_info(TensorShape(k, m, batch), 1, data_type);
TensorInfo input1_info(TensorShape(n, k, batch), 1, data_type);
TensorInfo input2_info(TensorShape(n), 1, data_type);
TensorInfo output_info(TensorShape(n, m, batch), 1, data_type);
GEMMKernelInfo gemm_info(m, n, k, 0 /**< Depth of the output tensor in case is reinterpreted as 3D */,
false /**< reinterpret the input as 3D */,
true /**< Flag used to broadcast the bias addition */,
false /**< wider accumm */,
false /**< has pad y */,
ActivationLayerInfo::ActivationFunction::IDENTITY,
1 /**< Multiplication factor for the width of the 1xW transposed block */,
1 /**< Multiplication factor for the height of the 4x4 interleaved block */,
lhs_info,
rhs_info,
0 /**< Offset to be added to each element of the matrix A */,
0 /**< Offset to be added to each element of the matrix B */,
post_ops);
return bool(ClGemmMatrixMultiplyNativeKernel::validate(&input0_info.clone()->set_is_resizable(true),
&input1_info.clone()->set_is_resizable(true),
&input2_info.clone()->set_is_resizable(true),
&output_info.clone()->set_is_resizable(true),1.f,1.f,
lhs_info,
rhs_info,
gemm_info));
}
/** Configuration test */
void validate_configuration(unsigned int m_value, unsigned int n_value, unsigned int k_value, unsigned int b_value, unsigned int m0_value, unsigned int n0_value, unsigned int k0_value, bool broadcast_bias, DataType data_type, const ActivationLayerInfo &act_info)
{
const unsigned int M = m_value;
const unsigned int N = n_value;
const unsigned int K = k_value;
GEMMLHSMatrixInfo lhs_info;
lhs_info.m0 = m0_value;
lhs_info.k0 = k0_value;
GEMMRHSMatrixInfo rhs_info;
rhs_info.n0 = n0_value;
rhs_info.k0 = k0_value;
GEMMKernelInfo kernel_info;
kernel_info.m = M;
kernel_info.n = N;
kernel_info.k = K;
kernel_info.broadcast_bias = broadcast_bias;
kernel_info.activation_info = act_info;
const TensorShape lhs_shape(K, M, b_value);
const TensorShape rhs_shape(N, K, b_value);
const TensorShape bias_shape(N,
broadcast_bias? 1 : M,
broadcast_bias? 1 : b_value);
const TensorShape dst_shape = compute_mm_shape(TensorInfo(lhs_shape, 1, data_type),
TensorInfo(rhs_shape, 1, data_type),
kernel_info);
// Create tensors
CLTensor lhs = create_tensor<CLTensor>(lhs_shape, data_type);
CLTensor rhs = create_tensor<CLTensor>(rhs_shape, data_type);
CLTensor bias = create_tensor<CLTensor>(bias_shape, data_type);
CLTensor dst = create_tensor<CLTensor>(dst_shape, data_type);
ARM_COMPUTE_EXPECT(lhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(rhs.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(bias.info()->is_resizable(), framework::LogLevel::ERRORS);
ARM_COMPUTE_EXPECT(dst.info()->is_resizable(), framework::LogLevel::ERRORS);
// Create and configure function
CLGEMMMatrixMultiplyNative gemm;
gemm.configure(lhs.info(), rhs.info(), bias.info(), dst.info(), 1.0f, 1.0f, lhs_info, rhs_info, kernel_info);
}
} // namespace
TEST_SUITE(CL)
TEST_SUITE(GEMMMatrixMultiplyNative)
TEST_SUITE(ValidateFusedPostOpsConfigs)
TEST_SUITE(Invalid)
TEST_CASE(UnsupportedPostOpSequence, framework::DatasetMode::ALL)
{
const auto data_type = DataType::F32;
const unsigned int m = 17;
const unsigned int n = 1;
const unsigned int k = 13;
const unsigned int batch = 2;
TensorShape post_op_arg0_shape(n, m, batch);
TensorInfo post_op_arg_info(post_op_arg0_shape, 1, data_type);
auto post_op_arg1_info = post_op_arg_info.clone();
// Unsupported sequence of post ops
experimental::PostOpList<ITensorInfo*> post_ops{};
post_ops.push_back_op<experimental::PostOpEltwiseAdd<ITensorInfo*>>(
&post_op_arg_info,
1,
ConvertPolicy::SATURATE);
post_ops.push_back_op<experimental::PostOpEltwiseAdd<ITensorInfo*>>(
post_op_arg1_info.get(),
0,
ConvertPolicy::SATURATE);
ARM_COMPUTE_EXPECT(is_post_op_list_valid(m, n, k, batch, data_type, post_ops) == false, framework::LogLevel::ERRORS);
}
TEST_CASE(OutputWidened, framework::DatasetMode::ALL)
{
// Invalid broadcast: post op tensors "widen" the output tensor
const auto data_type = DataType::F32;
const unsigned int m = 1;
const unsigned int n = 18;
const unsigned int k = 13;
const unsigned int batch = 2;
TensorShape post_op_arg_shape(n, m + 1, batch); // output's Y dimension (m) is "widened", which is not allowed
TensorInfo post_op_arg_info(post_op_arg_shape, 1, data_type);
experimental::PostOpList<ITensorInfo*> post_ops{};
post_ops.push_back_op<experimental::PostOpEltwiseAdd<ITensorInfo*>>( &post_op_arg_info, 0, ConvertPolicy::SATURATE);
ARM_COMPUTE_EXPECT(is_post_op_list_valid(m, n, k, batch, data_type, post_ops) == false, framework::LogLevel::ERRORS);
}
TEST_CASE(BroadcastInXDimOnly, framework::DatasetMode::ALL)
{
// Invalid broadcast: post op tensors broadcast in the first dimension (X) only
const auto data_type = DataType::F32;
const unsigned int m = 22;
const unsigned int n = 16;
const unsigned int k = 15;
const unsigned int batch = 3;
TensorShape post_op_arg_shape(1, m, batch);
TensorInfo post_op_arg_info(post_op_arg_shape, 1, data_type);
experimental::PostOpList<ITensorInfo*> post_ops{};
post_ops.push_back_op<experimental::PostOpEltwiseAdd<ITensorInfo*>>( &post_op_arg_info, 0, ConvertPolicy::SATURATE);
ARM_COMPUTE_EXPECT(is_post_op_list_valid(m, n, k, batch, data_type, post_ops) == false, framework::LogLevel::ERRORS);
}
TEST_SUITE_END() // Invalid
TEST_SUITE(Valid)
TEST_CASE(EmptyPostOpList, framework::DatasetMode::ALL)
{
const auto data_type = DataType::F32;
const unsigned int m = 22;
const unsigned int n = 16;
const unsigned int k = 15;
const unsigned int batch = 3;
experimental::PostOpList<ITensorInfo*> post_ops{};
ARM_COMPUTE_EXPECT(is_post_op_list_valid(m, n, k, batch, data_type, post_ops) == true, framework::LogLevel::ERRORS);
}
TEST_CASE(BroadcastInYDimOnly, framework::DatasetMode::ALL)
{
const auto data_type = DataType::F32;
const unsigned int m = 22;
const unsigned int n = 16;
const unsigned int k = 15;
const unsigned int batch = 3;
TensorShape post_op_arg_shape(n, 1, batch);
TensorInfo post_op_arg_info(post_op_arg_shape, 1, data_type);
experimental::PostOpList<ITensorInfo*> post_ops{};
post_ops.push_back_op<experimental::PostOpEltwiseAdd<ITensorInfo*>>( &post_op_arg_info, 0, ConvertPolicy::SATURATE);
ARM_COMPUTE_EXPECT(is_post_op_list_valid(m, n, k, batch, data_type, post_ops) == true, framework::LogLevel::ERRORS);
}
TEST_CASE(BroadcastInBothXandYDims, framework::DatasetMode::ALL)
{
const auto data_type = DataType::F32;
const unsigned int m = 22;
const unsigned int n = 16;
const unsigned int k = 15;
const unsigned int batch = 3;
TensorShape post_op_arg_shape(1, 1, batch);
TensorInfo post_op_arg_info(post_op_arg_shape, 1, data_type);
experimental::PostOpList<ITensorInfo*> post_ops{};
post_ops.push_back_op<experimental::PostOpEltwiseAdd<ITensorInfo*>>( &post_op_arg_info, 0, ConvertPolicy::SATURATE);
ARM_COMPUTE_EXPECT(is_post_op_list_valid(m, n, k, batch, data_type, post_ops) == true, framework::LogLevel::ERRORS);
}
TEST_CASE(BroadcastInAllDims, framework::DatasetMode::ALL)
{
const auto data_type = DataType::F32;
const unsigned int m = 22;
const unsigned int n = 16;
const unsigned int k = 15;
const unsigned int batch = 3;
TensorShape post_op_arg_shape(1, 1, 1);
TensorInfo post_op_arg_info(post_op_arg_shape, 1, data_type);
experimental::PostOpList<ITensorInfo*> post_ops{};
post_ops.push_back_op<experimental::PostOpEltwiseAdd<ITensorInfo*>>( &post_op_arg_info, 0, ConvertPolicy::SATURATE);
ARM_COMPUTE_EXPECT(is_post_op_list_valid(m, n, k, batch, data_type, post_ops) == true, framework::LogLevel::ERRORS);
}
TEST_SUITE_END() // Valid
TEST_SUITE_END() // ValidateFusedPostOps
TEST_SUITE(Float)
TEST_SUITE(FP32)
DATA_TEST_CASE(Configuration, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
framework::dataset::make("batch_size", 1)),
m0_values_precommit),
n0_values_precommit),
k0_values_precommit),
broadcast_bias_values),
act_values),
m_value, n_value, k_value, b_value, m0_value, n0_value, k0_value, broadcast_bias, act_value)
{
validate_configuration(m_value, n_value, k_value, b_value, m0_value, n0_value, k0_value, broadcast_bias, DataType::F32, act_value);
}
FIXTURE_DATA_TEST_CASE(RunSmallBoundaryHandlingPartialInXPartialInY, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(
framework::dataset::make("M", 3),
framework::dataset::make("N", 1)),
boundary_handling_cases))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmallBoundaryHandlingPartialInXFullInY, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(
framework::dataset::make("M", 64),
framework::dataset::make("N", 51)),
boundary_handling_cases))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmallBoundaryHandlingFullInXFullInY, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(
framework::dataset::make("M", 64),
framework::dataset::make("N", 32)),
boundary_handling_cases))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmallBoundaryHandlingFullInXPartialInY, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(
framework::dataset::make("M", 37),
framework::dataset::make("N", 32)),
boundary_handling_cases))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
b_values),
m0_values_precommit),
n0_values_precommit),
k0_values_precommit),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
broadcast_bias_values),
act_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLGEMMMatrixMultiplyNativeFixture<float>, framework::DatasetMode::DISABLED,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
b_values),
m0_values_nightly),
n0_values_nightly),
k0_values_nightly),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
broadcast_bias_values),
act_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunSmall3D, CLGEMMMatrixMultiplyNative3DFixture<float>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_w_values,
m_h_values),
n_values),
k_values),
b_values),
m0_values_precommit),
n0_values_precommit),
k0_values_precommit),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
act_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge3D, CLGEMMMatrixMultiplyNative3DFixture<float>, framework::DatasetMode::DISABLED,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_w_values,
m_h_values),
n_values),
k_values),
b_values),
m0_values_nightly),
n0_values_nightly),
k0_values_nightly),
framework::dataset::make("DataType", DataType::F32)),
a_values),
beta_values),
act_values))
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
TEST_SUITE(FusedPostOps)
FIXTURE_DATA_TEST_CASE(RunSmall, CLGEMMMatrixMultiplyNativeWithPostOpsFixture<float>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
m_values,
n_values),
k_values),
b_values),
framework::dataset::make("M0", { 4 })),
n0_values_precommit),
k0_values_precommit),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("alpha", {1.0f} )),
framework::dataset::make("beta", {1.0f} )),
framework::dataset::make("broadcast_bias", { false, true } )),
framework::dataset::make("Activation", { ActivationLayerInfo() })),
post_op_lists)
)
{
// Validate output
validate(CLAccessor(_target), _reference, rel_tolerance_f32, 0.f, abs_tolerance_f32);
}
TEST_SUITE_END() // FusedPostOps
TEST_SUITE_END() // FP32
TEST_SUITE_END() // Float
TEST_SUITE_END() // GEMMMatrixMulipltyNative
TEST_SUITE_END() // CL
} // namespace validation
} // namespace test
} // namespace arm_compute