blob: aa458c21195f6e98cceab039011e4d5729f39bc5 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEElementwiseOperationKernel.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/NEAsymm.h"
#include "arm_compute/core/NEON/NEFixedPoint.h"
#include "arm_compute/core/NEON/wrapper/wrapper.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Validate.h"
#include <algorithm>
#include <arm_neon.h>
#include <cstdint>
#include <map>
#include <string>
namespace arm_compute
{
class Coordinates;
namespace
{
float32x4x4_t load_quantized(const uint8_t *input1_ptr, const int32x4_t &offset, const float32x4_t &scale)
{
qasymm8x16_t x = vld1q_u8(input1_ptr);
const float32x4x4_t out =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(x))))), offset)), scale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(x))))), offset)), scale),
}
};
return out;
}
void store_quantized(uint8_t *output_ptr, const uint32x4x4_t &out)
{
const uint8x8_t pa = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[0]), vqmovn_u32(out.val[1])));
const uint8x8_t pb = vqmovn_u16(vcombine_u16(vqmovn_u32(out.val[2]), vqmovn_u32(out.val[3])));
vst1q_u8(output_ptr, vcombine_u8(pa, pb));
}
void store_quantized(uint8_t *output_ptr, const int32x4x4_t &out)
{
const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[0]), vqmovn_s32(out.val[1])));
const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(out.val[2]), vqmovn_s32(out.val[3])));
vst1q_u8(output_ptr, vcombine_u8(pa, pb));
}
void store_quantized(uint8_t *output_ptr, const float32x4x4_t &rf, const float32x4_t &offset, const float32x4_t &invscale)
{
int32x4x4_t out =
{
{
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[0], invscale)),
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[1], invscale)),
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[2], invscale)),
vcvtq_s32_f32(vmlaq_f32(offset, rf.val[3], invscale)),
}
};
store_quantized(output_ptr, out);
}
float32x4x4_t dup_quantized(qasymm8_t broadcast_value, int offset, float scale)
{
const qasymm8x16_t broadcast_value_vec = vdupq_n_u8(broadcast_value);
const int32x4_t voffset = vdupq_n_s32(offset);
const float32x4_t vscale = vdupq_n_f32(scale);
const float32x4x4_t broadcast_vector =
{
{
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(broadcast_value_vec))))), voffset)), vscale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale),
vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(broadcast_value_vec))))), voffset)), vscale),
}
};
return broadcast_vector;
}
template <ArithmeticOperation op, typename ScalarType>
inline ScalarType elementwise_arithm_op_scalar(const ScalarType &a, const ScalarType &b)
{
auto res = ScalarType(0);
switch(op)
{
case ArithmeticOperation::MAX:
res = std::max(a, b);
break;
case ArithmeticOperation::MIN:
res = std::min(a, b);
break;
case ArithmeticOperation::SQUARED_DIFF:
{
res = (a - b) * (a - b);
break;
}
case ArithmeticOperation::DIV:
{
res = a / b;
break;
}
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <ArithmeticOperation op>
inline uint8_t elementwise_arithm_op_quantized_scalar(const float &a, const float &b, QuantizationInfo qinfo)
{
return qinfo.quantize(elementwise_arithm_op_scalar<op>(a, b), RoundingPolicy::TO_NEAREST_UP);
}
template <ArithmeticOperation op, typename VectorType>
inline VectorType elementwise_arithm_op(const VectorType &a, const VectorType &b)
{
VectorType res = { 0, 0, 0, 0 };
switch(op)
{
case ArithmeticOperation::MAX:
res = wrapper::vmax(a, b);
break;
case ArithmeticOperation::MIN:
res = wrapper::vmin(a, b);
break;
case ArithmeticOperation::SQUARED_DIFF:
{
const VectorType tmp = wrapper::vsub(a, b);
res = wrapper::vmul(tmp, tmp);
break;
}
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <>
inline float32x4_t elementwise_arithm_op<ArithmeticOperation::DIV, float32x4_t>(const float32x4_t &a, const float32x4_t &b)
{
return wrapper::vdiv(a, b);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <>
inline float16x8_t elementwise_arithm_op<ArithmeticOperation::DIV, float16x8_t>(const float16x8_t &a, const float16x8_t &b)
{
return wrapper::vdiv(a, b);
}
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <ArithmeticOperation op>
inline float32x4x4_t elementwise_arithm_op(const float32x4x4_t &a, const float32x4x4_t &b)
{
float32x4x4_t out =
{
{
elementwise_arithm_op<op>(a.val[0], b.val[0]),
elementwise_arithm_op<op>(a.val[1], b.val[1]),
elementwise_arithm_op<op>(a.val[2], b.val[2]),
elementwise_arithm_op<op>(a.val[3], b.val[3]),
}
};
return out;
}
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline VectorType elementwise_arithm_op_broadcast(const VectorType &a, const ScalarType &broadcast_value, const bool reorder)
{
VectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag());
return elementwise_arithm_op<op>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
}
template <ComparisonOperation op, typename InputScalarType>
inline uint8_t elementwise_comp_op_scalar(const InputScalarType &a, const InputScalarType &b)
{
bool res = false;
switch(op)
{
case ComparisonOperation::Equal:
res = (a == b);
break;
case ComparisonOperation::NotEqual:
res = (a != b);
break;
case ComparisonOperation::Greater:
res = (a > b);
break;
case ComparisonOperation::GreaterEqual:
res = (a >= b);
break;
case ComparisonOperation::Less:
res = (a < b);
break;
case ComparisonOperation::LessEqual:
res = (a <= b);
break;
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res ? ~static_cast<uint8_t>(0) : static_cast<uint8_t>(0);
}
template <ComparisonOperation op>
inline uint8_t elementwise_comp_op_quantized_scalar(const float &a, const float &b, QuantizationInfo qinfo)
{
ARM_COMPUTE_UNUSED(qinfo);
return elementwise_comp_op_scalar<op>(a, b);
}
template <ComparisonOperation op, typename InputVectorType, typename OutputVectorType>
inline OutputVectorType elementwise_comp_op(const InputVectorType &a, const InputVectorType &b)
{
OutputVectorType res = { 0, 0, 0, 0 };
switch(op)
{
case ComparisonOperation::Equal:
res = wrapper::vceq(a, b);
break;
case ComparisonOperation::NotEqual:
res = wrapper::vnot(wrapper::vceq(a, b));
break;
case ComparisonOperation::Greater:
res = wrapper::vcgt(a, b);
break;
case ComparisonOperation::GreaterEqual:
res = wrapper::vcge(a, b);
break;
case ComparisonOperation::Less:
res = wrapper::vcgt(b, a);
break;
case ComparisonOperation::LessEqual:
res = wrapper::vcge(b, a);
break;
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
return res;
}
template <ComparisonOperation op>
inline uint32x4x4_t elementwise_comp_op(const float32x4x4_t &a, const float32x4x4_t &b)
{
uint32x4x4_t out =
{
{
elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[0], b.val[0]),
elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[1], b.val[1]),
elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[2], b.val[2]),
elementwise_comp_op<op, float32x4_t, uint32x4_t>(a.val[3], b.val[3])
}
};
return out;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType, typename OutputVectorType>
inline OutputVectorType elementwise_comp_op_broadcast(const InputVectorType &a, const InputScalarType &broadcast_value, const bool reorder)
{
InputVectorType broadcast_vector = wrapper::vdup_n(broadcast_value, wrapper::traits::vector_128_tag());
return elementwise_comp_op<op, InputVectorType, OutputVectorType>(reorder ? broadcast_vector : a, reorder ? a : broadcast_vector);
}
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline int elementwise_arithm_op_loop(int window_start_x, int window_end_x, int window_step_x,
const ScalarType *input1_ptr, const ScalarType *input2_ptr, ScalarType *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
wrapper::vstore(output_ptr + x, elementwise_arithm_op<op>(a, b));
}
return x;
}
template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
float32x4_t voffseto, float32x4_t invvscaleo)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
// Get inputs and compute output
const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
const float32x4x4_t rf = elementwise_arithm_op<op>(af, bf);
store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
}
return x;
}
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
inline int elementwise_arithm_op_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
const ScalarType *non_broadcast_input_ptr, const ScalarType &broadcast_value, ScalarType *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq((non_broadcast_input_ptr + x));
wrapper::vstore(output_ptr + x, elementwise_arithm_op_broadcast<op>(a, broadcast_value, reorder));
}
return x;
}
template <ArithmeticOperation op>
inline int elementwise_arithm_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
const float32x4x4_t rf = elementwise_arithm_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
store_quantized(output_ptr + x, rf, voffseto, invvscaleo);
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_16_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint16x8_t>(a, b);
wrapper::vstore(output_ptr + x, wrapper::vmovn(res));
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_32_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *input1_ptr, const InputScalarType *input2_ptr, uint8_t *output_ptr)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
auto a = wrapper::vloadq(input1_ptr + x);
auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
a = wrapper::vloadq(input1_ptr + x + 4);
b = wrapper::vloadq(input2_ptr + x + 4);
const auto res2 = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(res), wrapper::vmovn(res2))));
}
if(x <= window_end_x - 4)
{
const auto a = wrapper::vloadq(input1_ptr + x);
const auto b = wrapper::vloadq(input2_ptr + x);
const auto res = elementwise_comp_op<op, InputVectorType, uint32x4_t>(a, b);
for(int i = 0; i < 4; i++)
{
*(output_ptr + x + i) = wrapper::vgetlane(res, i);
}
x = +4;
}
return x;
}
template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_loop(int window_start_x, int window_end_x, int window_step_x,
const uint8_t *input1_ptr, const uint8_t *input2_ptr, uint8_t *output_ptr,
int32x4_t voffset1, int32x4_t voffset2, float32x4_t vscale1, float32x4_t vscale2,
float32x4_t voffseto, float32x4_t invvscaleo)
{
ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t af = load_quantized(input1_ptr + x, voffset1, vscale1);
const float32x4x4_t bf = load_quantized(input2_ptr + x, voffset2, vscale2);
const uint32x4x4_t rf = elementwise_comp_op<op>(af, bf);
store_quantized(output_ptr + x, rf);
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_16_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint16x8_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
wrapper::vstore(output_ptr + x, wrapper::vmovn(a));
}
return x;
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
inline int elementwise_comp_op_broadcast_32_loop(int window_start_x, int window_end_x, int window_step_x,
const InputScalarType *non_broadcast_input_ptr, const InputScalarType &broadcast_value, uint8_t *output_ptr, const bool reorder)
{
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x), broadcast_value, reorder);
const auto b = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq(non_broadcast_input_ptr + x + 4), broadcast_value, reorder);
wrapper::vstore(output_ptr + x, wrapper::vmovn(wrapper::vcombine(wrapper::vmovn(a), wrapper::vmovn(b))));
}
if(x <= window_end_x - 4)
{
const auto a = elementwise_comp_op_broadcast<op, InputScalarType, InputVectorType, uint32x4_t>(wrapper::vloadq((non_broadcast_input_ptr + x)), broadcast_value, reorder);
for(int i = 0; i < 4; i++)
{
*(output_ptr + x + i) = wrapper::vgetlane(a, i);
}
x = +4;
}
return x;
}
template <ComparisonOperation op>
inline int elementwise_comp_op_quantized_broadcast_loop(int window_start_x, int window_end_x, int window_step_x,
const uint8_t *non_broadcast_input_ptr, float32x4x4_t broadcast_vector, uint8_t *output_ptr,
int32x4_t voffset_non_broadcast, float32x4_t vscale_non_broadcast,
float32x4_t voffseto, float32x4_t invvscaleo, bool reorder)
{
ARM_COMPUTE_UNUSED(voffseto, invvscaleo);
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const float32x4x4_t af = load_quantized(non_broadcast_input_ptr + x, voffset_non_broadcast, vscale_non_broadcast);
const uint32x4x4_t rf = elementwise_comp_op<op>(reorder ? broadcast_vector : af, reorder ? af : broadcast_vector);
store_quantized(output_ptr + x, rf);
}
return x;
}
template <typename InputScalarType, typename OutputScalarType, typename InputVectorType>
void elementwise_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
OutputScalarType (*scalar_func)(const InputScalarType &, const InputScalarType &),
int (*broadcast_func)(int, int, int, const InputScalarType *, const InputScalarType &, OutputScalarType *, const bool),
int (*neon_func)(int, int, int, const InputScalarType *, const InputScalarType *, OutputScalarType *))
{
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = std::min(16 / static_cast<int>(sizeof(OutputScalarType)), 8);
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
if(is_broadcast_across_x)
{
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates & id)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto non_broadcast_input_ptr = reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
const InputScalarType broadcast_value = *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());
int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_value, output_ptr, !is_broadcast_input_2);
for(; x < window_end_x; ++x)
{
const auto a = *(non_broadcast_input_ptr + x);
*(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? broadcast_value : a, !is_broadcast_input_2 ? a : broadcast_value);
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates & id)
{
auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());
int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr);
for(; x < window_end_x; ++x)
{
const auto a = *(input1_ptr + x);
const auto b = *(input2_ptr + x);
*(output_ptr + x) = (*scalar_func)(a, b);
}
},
input1, input2, output);
}
}
void elementwise_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window,
uint8_t (*scalar_func)(const float &, const float &, QuantizationInfo),
int (*broadcast_func)(int, int, int, const uint8_t *, float32x4x4_t, uint8_t *, int32x4_t, float32x4_t,
float32x4_t, float32x4_t, const bool),
int (*neon_func)(int, int, int, const uint8_t *, const uint8_t *, uint8_t *,
int32x4_t, int32x4_t, float32x4_t, float32x4_t,
float32x4_t, float32x4_t))
{
// Create input windows
Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
// Clear X Dimension on execution window as we handle manually
Window win = window;
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
const float output_scale = out->info()->quantization_info().scale;
const int output_offset = out->info()->quantization_info().offset;
// Output quantization info (add 0.5 to round toward the nearest integer - 0.5 rounds away from zero)
const float32x4_t voffseto = vdupq_n_f32(output_offset + 0.5f);
const float32x4_t invvscaleo = vdupq_n_f32(1.f / output_scale);
if(is_broadcast_across_x)
{
// Select the broadcast input on the X axis
const bool is_broadcast_input_2 = input2_win.x().step() == 0;
Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
const QuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info();
const QuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info();
const int32x4_t voffset_non_broadcast = vdupq_n_s32(non_broadcast_qinfo.offset);
const float32x4_t vscale_non_broadcast = vdupq_n_f32(non_broadcast_qinfo.scale);
// Clear X Dimension on execution window as we handle manually
non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator broadcast_input(broadcast_tensor, broadcast_win);
Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates & id)
{
const auto non_broadcast_input_ptr = reinterpret_cast<const uint8_t *>(non_broadcast_input.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
const uint8_t broadcast_value = *reinterpret_cast<const uint8_t *>(broadcast_input.ptr());
const float32x4x4_t broadcast_vector = dup_quantized(broadcast_value, broadcast_qinfo.offset, broadcast_qinfo.scale);
int x = (*broadcast_func)(window_start_x, window_end_x, window_step_x, non_broadcast_input_ptr, broadcast_vector, output_ptr,
voffset_non_broadcast, vscale_non_broadcast, voffseto, invvscaleo, !is_broadcast_input_2);
for(; x < window_end_x; ++x)
{
const float afs = scvt_f32_qasymm8(*(non_broadcast_input_ptr + x), non_broadcast_qinfo.scale, non_broadcast_qinfo.offset);
const float bfs = scvt_f32_qasymm8(broadcast_value, broadcast_qinfo.scale, broadcast_qinfo.offset);
*(output_ptr + x) = (*scalar_func)(!is_broadcast_input_2 ? bfs : afs, !is_broadcast_input_2 ? afs : bfs,
out->info()->quantization_info());
}
},
broadcast_input, non_broadcast_input, output);
}
else
{
// Input1 quantization info
const int32x4_t voffset1 = vdupq_n_s32(in1->info()->quantization_info().offset);
const float32x4_t vscale1 = vdupq_n_f32(in1->info()->quantization_info().scale);
// Input2 quantization info
const int32x4_t voffset2 = vdupq_n_s32(in2->info()->quantization_info().offset);
const float32x4_t vscale2 = vdupq_n_f32(in2->info()->quantization_info().scale);
// Clear X Dimension on execution window as we handle manually
input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
const QuantizationInfo input1_qinfo = in1->info()->quantization_info();
const QuantizationInfo input2_qinfo = in2->info()->quantization_info();
Iterator input1(in1, input1_win);
Iterator input2(in2, input2_win);
Iterator output(out, win);
execute_window_loop(win, [&](const Coordinates & id)
{
const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
const auto output_ptr = reinterpret_cast<uint8_t *>(output.ptr());
int x = (*neon_func)(window_start_x, window_end_x, window_step_x, input1_ptr, input2_ptr, output_ptr, voffset1, voffset2,
vscale1, vscale2, voffseto, invvscaleo);
for(; x < window_end_x; ++x)
{
const float afs = scvt_f32_qasymm8(*(input1_ptr + x), input1_qinfo.scale, input1_qinfo.offset);
const float bfs = scvt_f32_qasymm8(*(input2_ptr + x), input2_qinfo.scale, input2_qinfo.offset);
*(output_ptr + x) = (*scalar_func)(afs, bfs, out->info()->quantization_info());
}
},
input1, input2, output);
}
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
&elementwise_comp_op_scalar<op, InputScalarType>,
&elementwise_comp_op_broadcast_16_loop<op, InputScalarType, InputVectorType>,
&elementwise_comp_op_16_loop<op, InputScalarType, InputVectorType>);
}
template <ComparisonOperation op, typename InputScalarType, typename InputVectorType>
void elementwise_comp_op_32(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op<InputScalarType, uint8_t, InputVectorType>(in1, in2, out, window,
&elementwise_comp_op_scalar<op, InputScalarType>,
&elementwise_comp_op_broadcast_32_loop<op, InputScalarType, InputVectorType>,
&elementwise_comp_op_32_loop<op, InputScalarType, InputVectorType>);
}
template <ArithmeticOperation op, typename ScalarType, typename VectorType>
void elementwise_arithm_op(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op<ScalarType, ScalarType, VectorType>(in1, in2, out, window,
&elementwise_arithm_op_scalar<op, ScalarType>,
&elementwise_arithm_op_broadcast_loop<op, ScalarType, VectorType>,
&elementwise_arithm_op_loop<op, ScalarType, VectorType>);
}
template <ArithmeticOperation op>
void elementwise_arithm_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op_quantized(in1, in2, out, window, &elementwise_arithm_op_quantized_scalar<op>,
&elementwise_arithm_op_quantized_broadcast_loop<op>,
&elementwise_arithm_op_quantized_loop<op>);
}
template <ComparisonOperation op>
void elementwise_comp_op_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window)
{
elementwise_op_quantized(in1, in2, out, window, &elementwise_comp_op_quantized_scalar<op>,
&elementwise_comp_op_quantized_broadcast_loop<op>,
&elementwise_comp_op_quantized_loop<op>);
}
std::function<void(const ITensor *, const ITensor *, ITensor *, const Window &)>
configure_func(const ITensor *input1, const ITensor *input2, ITensor *output,
std::map<std::string, NEElementwiseOperationKernel::ElementwiseFunction *> map_function)
{
std::string function_to_call("op_");
function_to_call += string_from_data_type(input1->info()->data_type()) + "_";
function_to_call += string_from_data_type(input2->info()->data_type()) + "_";
function_to_call += string_from_data_type(output->info()->data_type());
auto it = map_function.find(function_to_call);
if(it != map_function.end())
{
auto func = it->second;
return [func](const ITensor * input1, const ITensor * input2, ITensor * output, const Window & window)
{
func(input1, input2, output, window);
};
}
return nullptr;
}
template <ArithmeticOperation op>
std::function<void(const ITensor *, const ITensor *, ITensor *, const Window &)>
configure_arithm_func(const ITensor *input1, const ITensor *input2, ITensor *output)
{
static std::map<std::string, NEElementwiseOperationKernel::ElementwiseFunction *> map_function =
{
{ "op_F32_F32_F32", &elementwise_arithm_op<op, float, float32x4_t> },
{ "op_S16_S16_S16", &elementwise_arithm_op<op, int16_t, int16x8_t> },
{ "op_S32_S32_S32", &elementwise_arithm_op<op, int32_t, int32x4_t> },
{ "op_QASYMM8_QASYMM8_QASYMM8", &elementwise_arithm_op_quantized<op> }
};
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
map_function["op_F16_F16_F16"] = &elementwise_arithm_op<op, float16_t, float16x8_t>;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
return configure_func(input1, input2, output, map_function);
}
template <ComparisonOperation op>
std::function<void(const ITensor *input1, const ITensor *input2, ITensor *output, const Window &window)>
configure_comp_func(const ITensor *input1, const ITensor *input2, ITensor *output)
{
static std::map<std::string, NEElementwiseOperationKernel::ElementwiseFunction *> map_function =
{
{ "op_F32_F32_U8", &elementwise_comp_op_32<op, float, float32x4_t> },
{ "op_S16_S16_U8", &elementwise_comp_op_16<op, int16_t, int16x8_t> },
{ "op_S32_S32_U8", &elementwise_comp_op_32<op, int32_t, int32x4_t> },
{ "op_QASYMM8_QASYMM8_U8", &elementwise_comp_op_quantized<op> }
};
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
map_function["op_F16_F16_U8"] = &elementwise_comp_op_16<op, float16_t, float16x8_t>;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
return configure_func(input1, input2, output, map_function);
}
} // namespace
NEElementwiseOperationKernel::NEElementwiseOperationKernel()
: _function(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr)
{
}
Status NEElementwiseOperationKernel::validate_arguments_common(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::QASYMM8, DataType::S16, DataType::F16, DataType::S32, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &input2);
const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
// Validate in case of configured output
if(output.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
"Wrong shape for output");
}
return Status{};
}
void NEElementwiseOperationKernel::configure_common(const ITensor *input1, const ITensor *input2, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
// Configure kernel window
const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1->info(), *input2->info());
const TensorShape &out_shape = broadcast_pair.first;
const ValidRegion &valid_region = broadcast_pair.second;
// Auto initialize output if not initialized
auto_init_if_empty(*output->info(), out_shape, 1, input1->info()->data_type());
Window win = calculate_max_window(valid_region);
_input1 = input1;
_input2 = input2;
_output = output;
INEKernel::configure(win);
}
void NEElementwiseOperationKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info, window);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_function == nullptr);
_function(_input1, _input2, _output, window);
}
/** Arithmetic operators (min, max, squared_diff) */
void NEArithmeticOperationKernel::configure(ArithmeticOperation op, const ITensor *input1, const ITensor *input2, ITensor *output)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info()));
configure_common(input1, input2, output);
switch(op)
{
case ArithmeticOperation::MAX:
_function = configure_arithm_func<ArithmeticOperation::MAX>(input1, input2, output);
break;
case ArithmeticOperation::MIN:
_function = configure_arithm_func<ArithmeticOperation::MIN>(input1, input2, output);
break;
case ArithmeticOperation::SQUARED_DIFF:
_function = configure_arithm_func<ArithmeticOperation::SQUARED_DIFF>(input1, input2, output);
break;
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
}
Status NEArithmeticOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
// Validate in case of configured output
if(output.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(&input1, &output);
}
return validate_arguments_common(input1, input2, output);
}
Status NEArithmeticOperationKernel::validate(ArithmeticOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
ARM_COMPUTE_UNUSED(op);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
return Status{};
}
/** The division operator */
void NEDivisionOperationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info()));
configure_common(input1, input2, output);
_function = configure_arithm_func<ArithmeticOperation::DIV>(input1, input2, output);
}
Status NEDivisionOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::F16, DataType::F32);
return NEArithmeticOperationKernel::validate_arguments(input1, input2, output);
}
Status NEDivisionOperationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
return Status{};
}
/** Comparison operators (equal, not equal, less than, greater than, less than or equal, greater than or equal) */
void NEComparisonOperationKernel::configure(ComparisonOperation op, const ITensor *input1, const ITensor *input2, ITensor *output)
{
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info()));
configure_common(input1, input2, output);
switch(op)
{
case ComparisonOperation::Equal:
_function = configure_comp_func<ComparisonOperation::Equal>(input1, input2, output);
break;
case ComparisonOperation::NotEqual:
_function = configure_comp_func<ComparisonOperation::NotEqual>(input1, input2, output);
break;
case ComparisonOperation::Greater:
_function = configure_comp_func<ComparisonOperation::Greater>(input1, input2, output);
break;
case ComparisonOperation::GreaterEqual:
_function = configure_comp_func<ComparisonOperation::GreaterEqual>(input1, input2, output);
break;
case ComparisonOperation::Less:
_function = configure_comp_func<ComparisonOperation::Less>(input1, input2, output);
break;
case ComparisonOperation::LessEqual:
_function = configure_comp_func<ComparisonOperation::LessEqual>(input1, input2, output);
break;
default:
ARM_COMPUTE_ERROR("NOT_SUPPORTED!");
}
}
Status NEComparisonOperationKernel::validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output)
{
// Validate in case of configured output
if(output.total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8);
}
return validate_arguments_common(input1, input2, output);
}
Status NEComparisonOperationKernel::validate(ComparisonOperation op, const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
{
ARM_COMPUTE_UNUSED(op);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output));
return Status{};
}
} // namespace arm_compute