blob: 3fa5c58c3cb29755e5767da32c4e542265f309ec [file] [log] [blame]
/*
* Copyright (c) 2022-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef SRC_CORE_KERNELS_DEPTWISECONV2DNATIVE_IMPL_H
#define SRC_CORE_KERNELS_DEPTWISECONV2DNATIVE_IMPL_H
#include "arm_compute/core/Helpers.h"
#include "src/core/NEON/wrapper/wrapper.h"
namespace arm_compute
{
struct ConvolutionInfo;
namespace cpu
{
constexpr auto data_layout = DataLayout::NHWC;
const size_t width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const size_t height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const size_t channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
constexpr auto dim_manual_loop = Window::Dimension(0, 0, 0);
constexpr auto dim_single_unit_step = Window::Dimension(0, 1, 1);
constexpr size_t vector_size = 8;
struct DepthwiseConvolutionRunInfo
{
const size_t num_read_elements_per_iteration;
const uint32_t x_start;
const uint32_t x_end;
const uint32_t x_step;
const uint32_t x_leftover_start;
const size_t input_stride_y;
const size_t input_stride_z;
const size_t input_max_offset;
const size_t weights_width;
const size_t weights_height;
const size_t weights_stride_y;
const size_t weights_stride_z;
const size_t conv_stride_x;
const size_t conv_stride_y;
const size_t conv_pad_left;
const size_t conv_pad_top;
const size_t input_height;
const size_t input_width;
const size_t input_depth;
DepthwiseConvolutionRunInfo(const ITensorInfo &input,
const ITensorInfo &weights,
const PadStrideInfo &conv_info,
const Window &w,
uint32_t depth_multiplier = 1) // NOLINT
: num_read_elements_per_iteration(
(depth_multiplier == 1 ? (vector_size / element_size_from_data_type(input.data_type())) : 1)),
x_start(w.x().start()),
x_end(w.x().end()),
x_step(static_cast<uint32_t>(num_read_elements_per_iteration * depth_multiplier)),
x_leftover_start(std::max(static_cast<int32_t>(w.x().end() + 1) - static_cast<int32_t>(x_step), int32_t(0))),
input_stride_y(input.strides_in_bytes().y()),
input_stride_z(input.strides_in_bytes().z()),
input_max_offset(input.strides_in_bytes().z() * input.dimension(height_idx) -
(input.padding().bottom + input.padding().top) * input.strides_in_bytes().y()),
weights_width(weights.dimension(width_idx)),
weights_height(weights.dimension(height_idx)),
weights_stride_y(weights.strides_in_bytes().y()),
weights_stride_z(weights.strides_in_bytes().z()),
conv_stride_x(conv_info.stride().first),
conv_stride_y(conv_info.stride().second),
conv_pad_left(conv_info.pad_left()),
conv_pad_top(conv_info.pad_top()),
input_height(input.dimension(height_idx)),
input_width(input.dimension(width_idx)),
input_depth(input.dimension(channel_idx))
{
}
};
inline bool is_valid_input_region(int32_t base_w,
uint32_t base_h,
uint32_t w,
uint32_t h,
const DepthwiseConvolutionRunInfo &run_info,
const Size2D &dilation)
{
const int32_t current_h = base_h + h * dilation.y();
const bool is_valid_h = current_h >= 0 && current_h < static_cast<int32_t>(run_info.input_height);
const int32_t current_w = base_w + w * dilation.x();
const bool is_valid_w = current_w >= 0 && current_w < static_cast<int32_t>(run_info.input_width);
return is_valid_h && is_valid_w;
}
template <typename T>
void depthwise_loop_multiplier1_fp(const ITensor *src,
const ITensor *weights,
const ITensor *biases,
ITensor *dst,
const PadStrideInfo &conv_info,
const Size2D &dilation,
const Window &window,
bool has_biases)
{
constexpr auto element_per_vector = vector_size / sizeof(T);
using VectorType = typename wrapper::traits::neon_vector<T, element_per_vector>::type;
using TagType = typename wrapper::traits::neon_vector<T, element_per_vector>::tag_type;
const auto run_info = DepthwiseConvolutionRunInfo(*src->info(), *weights->info(), conv_info, window);
const VectorType zero_vector = wrapper::vdup_n(static_cast<T>(0), TagType{});
Window execution_window = window;
execution_window.set(Window::DimX, dim_single_unit_step);
Window win_input = window;
win_input.set(Window::DimX, dim_manual_loop);
win_input.set(Window::DimY, dim_manual_loop);
win_input.set(Window::DimZ, dim_manual_loop);
Window win_weights = win_input;
win_weights.set(Window::DimW, dim_manual_loop);
Window win_output = window;
win_output.set(Window::DimX, dim_manual_loop);
Iterator input_it(src, win_input);
Iterator weights_it(weights, win_weights);
Iterator output_it(dst, win_output);
Iterator biases_it{};
if (has_biases)
{
biases_it = Iterator(biases, win_weights);
}
execute_window_loop(
execution_window,
[&](const Coordinates &id)
{
const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
const int64_t base_input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
auto const base_weights_ptr = weights_it.ptr();
uint32_t x = run_info.x_start;
for (; x < run_info.x_leftover_start; x += run_info.x_step)
{
VectorType acc = zero_vector;
auto weights_ptr = base_weights_ptr;
int64_t input_offset = base_input_offset;
for (uint32_t h = 0; h < run_info.weights_height; ++h)
{
int64_t offs = input_offset + x * sizeof(T);
for (uint32_t w = 0; w < run_info.weights_width; ++w)
{
const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
const auto input_vals =
is_valid_region
? wrapper::vload(reinterpret_cast<T *>(
input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset)))
: zero_vector;
const auto weights_vals =
wrapper::vload(reinterpret_cast<T *>(weights_ptr + w * run_info.weights_stride_y) + x);
acc = wrapper::vmla(acc, weights_vals, input_vals);
offs += dilation.x() * run_info.input_stride_y;
}
weights_ptr += run_info.weights_stride_z;
input_offset += dilation.y() * run_info.input_stride_z;
}
if (has_biases)
{
const auto biases_vals = wrapper::vload(reinterpret_cast<T *>(biases_it.ptr()) + x);
acc = wrapper::vadd(acc, biases_vals);
}
wrapper::vstore(reinterpret_cast<T *>(output_it.ptr()) + x, acc);
}
for (; x < run_info.x_end; ++x)
{
auto acc_scalar = T{0};
auto weights_ptr = base_weights_ptr;
int64_t input_offset = base_input_offset;
for (size_t h = 0; h < run_info.weights_height; ++h)
{
int64_t offs = input_offset + x * sizeof(T);
for (size_t w = 0; w < run_info.weights_width; ++w)
{
const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
const auto input_vals =
is_valid_region
? *reinterpret_cast<T *>(input_it.ptr() +
std::min(static_cast<size_t>(offs), run_info.input_max_offset))
: 0;
const auto weights_vals =
*(reinterpret_cast<T *>(weights_ptr + w * run_info.weights_stride_y) + x);
acc_scalar += (input_vals * weights_vals);
offs += dilation.x() * run_info.input_stride_y;
}
weights_ptr += run_info.weights_stride_z;
input_offset += dilation.y() * run_info.input_stride_z;
}
if (has_biases)
{
const auto biases_vals = *(reinterpret_cast<T *>(biases_it.ptr()) + x);
acc_scalar += biases_vals;
}
*(reinterpret_cast<T *>(output_it.ptr()) + x) = acc_scalar;
}
},
input_it, weights_it, biases_it, output_it);
}
template <typename T>
void depthwise_loop_generic_fp(const ITensor *src,
const ITensor *weights,
const ITensor *biases,
ITensor *dst,
const PadStrideInfo &conv_info,
const Size2D &dilation,
unsigned int depth_multiplier,
const Window &window,
bool has_biases)
{
const auto run_info =
DepthwiseConvolutionRunInfo(*src->info(), *weights->info(), conv_info, window, depth_multiplier);
Window execution_window = window;
execution_window.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1));
Window win_input = execution_window;
win_input.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1));
win_input.set(Window::DimY, dim_manual_loop);
win_input.set(Window::DimZ, dim_manual_loop);
Window win_weights = window;
win_weights.set_dimension_step(Window::DimX, run_info.x_step);
win_weights.set(Window::DimY, dim_manual_loop);
win_weights.set(Window::DimZ, dim_manual_loop);
win_weights.set(Window::DimW, dim_manual_loop);
Window win_output = window;
win_output.set_dimension_step(Window::DimX, run_info.x_step);
Iterator input_it(src, win_input);
Iterator weights_it(weights, win_weights);
Iterator output_it(dst, win_output);
Iterator biases_it{};
if (has_biases)
{
biases_it = Iterator(biases, win_weights);
}
execute_window_loop(
execution_window,
[&](const Coordinates &id)
{
std::vector<T> acc(depth_multiplier, static_cast<T>(0));
const int input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
const int input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
int input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
auto weights_ptr = weights_it.ptr();
for (size_t h = 0; h < run_info.weights_height; ++h)
{
int offs = input_offset;
for (size_t w = 0; w < run_info.weights_width; ++w)
{
const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
const auto input_val =
is_valid_region ? *(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs),
run_info.input_max_offset)))
: T(0);
for (size_t m = 0; m < depth_multiplier; ++m)
{
const auto weights_val =
*(reinterpret_cast<T *>(weights_ptr + m * sizeof(T) + w * run_info.weights_stride_y));
acc.at(m) = support::cpp11::fma(weights_val, input_val, acc.at(m));
}
offs += dilation.x() * run_info.input_stride_y;
}
weights_ptr += run_info.weights_stride_z;
input_offset += dilation.y() * run_info.input_stride_z;
}
if (has_biases)
{
for (size_t m = 0; m < depth_multiplier; ++m)
{
const auto biases_val = *(reinterpret_cast<T *>(biases_it.ptr() + m * sizeof(T)));
*(reinterpret_cast<T *>(output_it.ptr() + m * sizeof(T))) = acc.at(m) + biases_val;
}
}
else
{
for (size_t m = 0; m < depth_multiplier; ++m)
{
*(reinterpret_cast<T *>(output_it.ptr() + m * sizeof(T))) = acc.at(m);
}
}
},
input_it, weights_it, biases_it, output_it);
}
template <typename T, typename TW>
void run_depthwise_float(const ITensor *src,
const ITensor *weights,
const ITensor *biases,
ITensor *dst,
const Window &window,
bool has_biases,
const ConvolutionInfo &info)
{
PadStrideInfo conv_info = info.pad_stride_info;
unsigned int depth_multiplier = info.depth_multiplier;
Size2D dilation = info.dilation;
if (depth_multiplier == 1)
{
depthwise_loop_multiplier1_fp<T>(src, weights, biases, dst, conv_info, dilation, window, has_biases);
}
else
{
depthwise_loop_generic_fp<T>(src, weights, biases, dst, conv_info, dilation, depth_multiplier, window,
has_biases);
}
}
template <typename T, typename TW>
void run_depthwise_quanitized8bit(const ITensor *src,
const ITensor *weights,
const ITensor *biases,
ITensor *dst,
const Window &window,
bool has_biases,
const ConvolutionInfo &info);
} // namespace cpu
} // namespace arm_compute
#endif //define SRC_CORE_KERNELS_DEPTWISECONV2DNATIVE_IMPL_H