blob: e0b411f78563bf12319892bedfa873f84aa07ba2 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h"
#include "arm_compute/runtime/NEON/functions/NEGEMMConv2d.h"
#include "arm_compute/runtime/NEON/functions/NEGEMMConvolutionLayer.h"
#include "arm_compute/runtime/NEON/functions/NEWinogradConvolutionLayer.h"
#include "arm_compute/runtime/Tensor.h"
#include "arm_compute/runtime/TensorAllocator.h"
#include "src/core/helpers/MemoryHelpers.h"
#include "src/runtime/cpu/operators/CpuConv2d.h"
#include "src/runtime/cpu/operators/CpuGemmConvolution.h"
#include "src/runtime/cpu/operators/CpuGemmDirectConv2d.h"
#include "src/runtime/cpu/operators/CpuWinogradConv2d.h"
#include "tests/NEON/Accessor.h"
#include "tests/PaddingCalculator.h"
#include "tests/datasets/LargeConvolutionLayerDataset.h"
#include "tests/datasets/SmallConvolutionLayerDataset.h"
#include "tests/datasets/TinyConvolutionLayerDataset.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Macros.h"
#include "tests/framework/datasets/Datasets.h"
#include "tests/validation/Validation.h"
#include "tests/validation/fixtures/ConvolutionLayerFixture.h"
#include "tests/validation/fixtures/WinogradConvolutionLayerFixture.h"
namespace arm_compute
{
namespace test
{
namespace validation
{
namespace detail
{
template <>
void configure_conv_function<NEGEMMConv2d, Tensor>(NEGEMMConv2d &func,
Tensor *src, const Tensor *weights, const Tensor *bias, Tensor *dst,
const PadStrideInfo &info, const WeightsInfo &weights_info,
const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
{
ARM_COMPUTE_UNUSED(weights_info);
Conv2dInfo conv_info(info, dilation, act_info, false, num_groups);
func.configure(src, weights, bias, dst, conv_info);
}
} // namespace detail
namespace
{
const RelativeTolerance<float> rel_tolerance_f32(0.01f); /**< Relative tolerance for FP32 types */
const RelativeTolerance<float> rel_tolerance_winograd_3x3_f32(0.05f); /**< Relative tolerance for FP32 types */
const AbsoluteTolerance<float> abs_tolerance_f32(0.002f); /**< Absolute tolerance for FP32 types */
const AbsoluteTolerance<float> abs_tolerance_1xN_f32(0.0041f); /**< Absolute tolerance for FP32 types */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
const AbsoluteTolerance<half> tolerance_convolution_layer_f16(half(0.4f));
constexpr float tolerance_num_f16 = 0.15f;
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
const RelativeTolerance<half_float::half> rel_tolerance_f16(half_float::half(0.2f)); /**< Relative tolerance value for FP16 types */
const AbsoluteTolerance<float> abs_tolerance_f16(0.2f); /**< Absolute tolerance for FP16 types */
constexpr float tolerance_num = 0.07f; /**< Tolerance number for the FP16 implementation */
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
constexpr AbsoluteTolerance<float> tolerance_qasymm8(0.0); /**< Tolerance value for comparing reference's output against implementation's output for quantized data types */
/** CNN data types */
const auto CNNDataTypes = framework::dataset::make("DataType",
{
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
DataType::F16,
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
DataType::F32,
DataType::QASYMM8,
});
const auto ActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
{
ActivationLayerInfo(),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::BOUNDED_RELU, 0.5f)
});
const auto QuantizationData = framework::dataset::make("QuantizationInfo",
{
QuantizationInfo(0.5f, 10),
QuantizationInfo(0.3f, 3),
QuantizationInfo(1.f, 10),
QuantizationInfo(1.1f, 10),
});
} // namespace
TEST_SUITE(NEON)
TEST_SUITE(ConvolutionLayer)
// *INDENT-OFF*
// clang-format off
DATA_TEST_CASE(ValidateConvolutionMethod, framework::DatasetMode::ALL, zip(zip(zip(zip(zip(
framework::dataset::make("InputInfo", { TensorInfo(TensorShape(18U, 18U, 32U), 1, DataType::F32),
TensorInfo(TensorShape(23U, 27U, 32U, 4U), 1, DataType::F32),
TensorInfo(TensorShape(3U, 3U, 2U, 1U), 1, DataType::F32),
TensorInfo(TensorShape(33U, 27U, 7U, 4U), 1, DataType::F32)
}),
framework::dataset::make("WeightsInfo", { TensorInfo(TensorShape(3U, 3U, 32U, 21U), 1, DataType::F32),
TensorInfo(TensorShape(5U, 5U, 32U, 21U), 1, DataType::F32),
TensorInfo(TensorShape(3U, 3U, 5U, 21U), 1, DataType::F32),
TensorInfo(TensorShape(5U, 5U, 7U, 16U), 1, DataType::F16)
})),
framework::dataset::make("OutputInfo", { TensorInfo(TensorShape(16U, 16U, 21U), 1, DataType::F32),
TensorInfo(TensorShape(19U, 23U, 21U, 4U), 1, DataType::F32),
TensorInfo(TensorShape(11U, 25U, 21U), 1, DataType::F32),
TensorInfo(TensorShape(11U, 12U, 16U, 4U), 1, DataType::F32)
})),
framework::dataset::make("ConvInfo", { PadStrideInfo(1, 1, 0, 0),
PadStrideInfo(1, 1, 0, 0),
PadStrideInfo(2, 1, 0, 0),
PadStrideInfo(3, 2, 1, 0)
})),
framework::dataset::make("FastMath", { true,
true,
false,
false
})),
framework::dataset::make("Expected", { ConvolutionMethod::WINOGRAD, ConvolutionMethod::WINOGRAD, ConvolutionMethod::GEMM, ConvolutionMethod::GEMM })),
input_info, weights_info, output_info, conv_info, fast_math, expected)
{
ConvolutionMethod is_valid = cpu::CpuConv2d::get_convolution_method(&input_info.clone()->set_is_resizable(true),
&weights_info.clone()->set_is_resizable(true),
&output_info.clone()->set_is_resizable(true), conv_info, WeightsInfo(), Size2D(1U, 1U), ActivationLayerInfo(), fast_math);
ARM_COMPUTE_EXPECT(is_valid == expected, framework::LogLevel::ERRORS);
}
// clang-format on
// *INDENT-ON*
TEST_SUITE_END() // ConvolutionLayer
TEST_SUITE(WinogradLayer)
template <typename T>
using NEWinogradConvolutionLayerFixture = WinogradConvolutionLayerFastMathValidationFixture<Tensor, Accessor, NEWinogradConvolutionLayer, T>;
template <typename T>
using NEWinogradConvolutionLayerMixedDataLayoutFixture = WinogradConvolutionLayerFastMathValidationFixture<Tensor, Accessor, NEWinogradConvolutionLayer, T, T, true, true>;
template <typename T>
using NEWinogradConvolutionLayerNoBiasFixture = WinogradConvolutionLayerFastMathValidationFixture<Tensor, Accessor, NEWinogradConvolutionLayer, T, T, false>;
/** Test case for memory injection in @ref cpu::CpuWinogradConv2d.
*
* Configure the operator once and inject memory at run-time in multiple executions.
*
* Checks performed in order:
* - Both runs compute the same output
*/
TEST_CASE(MemoryInjection, framework::DatasetMode::ALL)
{
auto winograd = std::make_unique<cpu::CpuWinogradConv2d>();
const auto src_info = TensorInfo(TensorShape(8U, 8U, 32U), 1, DataType::F32);
const auto w_info = TensorInfo(TensorShape(1U), 1, DataType::F32);
const auto b_info = TensorInfo(TensorShape(1U, 3U, 32U, 1U), 1, DataType::F32);
auto dst_info = TensorInfo(TensorShape(8U, 6U, 1U), 1, DataType::F32);
const PadStrideInfo pad_info{};
winograd->configure(&src_info, &b_info, &w_info, &dst_info, pad_info);
// telhs are newly created every call of this lambda function
auto a = create_tensor<Tensor>(src_info);
auto b = create_tensor<Tensor>(b_info);
auto c = create_tensor<Tensor>(w_info);
a.allocator()->allocate();
b.allocator()->allocate();
c.allocator()->allocate();
ITensorPack run_pack{ { TensorType::ACL_SRC_0, &a }, { TensorType::ACL_SRC_1, &b }, { TensorType::ACL_SRC_2, &c } };
ITensorPack prep_pack{ { TensorType::ACL_SRC_1, &b }, { TensorType::ACL_SRC_2, &c } };
auto mg = MemoryGroup{};
auto ws = manage_workspace<Tensor>(winograd->workspace(), mg, run_pack, prep_pack);
auto run_conv = [&]() -> Tensor
{
auto dst = create_tensor<Tensor>(dst_info);
dst.allocator()->allocate();
run_pack.add_tensor(TensorType::ACL_DST, &dst);
library->fill_tensor_value(Accessor(a), 1.f);
library->fill_tensor_value(Accessor(b), 2.f);
library->fill_tensor_value(Accessor(c), 3.f);
// This operator is configured once and captured by this lambda.
winograd->prepare(prep_pack);
winograd->run(run_pack);
return dst;
};
auto result_0 = run_conv();
auto result_1 = run_conv();
for(size_t i = 0; i < result_0.info()->tensor_shape().total_size(); ++i)
{
ARM_COMPUTE_EXPECT(((float *)result_0.buffer())[i] == ((float *)result_1.buffer())[i], framework::LogLevel::ERRORS);
}
}
/** Test case for memory injection in @ref NEWinogradConvolutionLayer.
*
* Make sure @ref NEWinogradConvolutionLayer still works through injecting the memory at configure time using the old API.
*
* Checks performed in order:
* - Both runs compute the same output
*/
TEST_CASE(MultipleExecutionWithConfigure, framework::DatasetMode::ALL)
{
auto gemm = std::make_unique<NEWinogradConvolutionLayer>();
const auto src_info = TensorInfo(TensorShape(8U, 8U, 32U), 1, DataType::F32);
const auto w_info = TensorInfo(TensorShape(1U), 1, DataType::F32);
const auto b_info = TensorInfo(TensorShape(1U, 3U, 32U, 1U), 1, DataType::F32);
auto dst_info = TensorInfo(TensorShape(8U, 6U, 1U), 1, DataType::F32);
const PadStrideInfo pad_info{};
auto run_conv = [&]()
{
auto src = create_tensor<Tensor>(src_info);
auto w = create_tensor<Tensor>(w_info);
auto b = create_tensor<Tensor>(b_info);
auto dst = create_tensor<Tensor>(dst_info);
gemm->configure(&src, &b, &w, &dst, pad_info);
src.allocator()->allocate();
b.allocator()->allocate();
w.allocator()->allocate();
dst.allocator()->allocate();
library->fill_tensor_value(Accessor(src), 1.f);
library->fill_tensor_value(Accessor(b), 2.f);
library->fill_tensor_value(Accessor(w), 3.f);
gemm->run();
return dst;
};
auto result_0 = run_conv();
auto result_1 = run_conv();
for(size_t i = 0; i < result_0.info()->tensor_shape().total_size(); ++i)
{
ARM_COMPUTE_EXPECT(((float *)result_0.buffer())[i] == ((float *)result_1.buffer())[i], framework::LogLevel::ERRORS);
}
}
TEST_SUITE(FP32)
TEST_SUITE(Conv1x3)
FIXTURE_DATA_TEST_CASE(RunSmall, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(datasets::SmallWinogradConvolutionLayer1x3Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunMixedDataLayout, NEWinogradConvolutionLayerMixedDataLayoutFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(combine(combine(combine(combine(combine(
framework::dataset::make("Input", TensorShape(8U, 8U, 32U)),
framework::dataset::make("Weight", TensorShape(1U, 3U, 32U, 1U))),
framework::dataset::make("Bias", TensorShape(1U))),
framework::dataset::make("Output", TensorShape(8U, 6U, 1U))),
framework::dataset::make("PadStrideInfo", PadStrideInfo(1, 1, 0, 0))),
framework::dataset::make("Dilation", Size2D(1U, 1U))),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY,
combine(combine(combine(datasets::LargeWinogradConvolutionLayer1x3Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_1xN_f32);
}
TEST_SUITE_END() // Conv1x3
TEST_SUITE(Conv3x1)
FIXTURE_DATA_TEST_CASE(RunSmall, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(datasets::SmallWinogradConvolutionLayer3x1Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY,
combine(combine(combine(datasets::LargeWinogradConvolutionLayer3x1Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_1xN_f32);
}
TEST_SUITE_END() // Conv3x1
TEST_SUITE(Conv1x5)
FIXTURE_DATA_TEST_CASE(RunSmall, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(datasets::SmallWinogradConvolutionLayer1x5Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY,
combine(combine(combine(datasets::LargeWinogradConvolutionLayer1x5Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_1xN_f32);
}
TEST_SUITE_END() // Conv1x5
TEST_SUITE(Conv5x1)
FIXTURE_DATA_TEST_CASE(RunSmall, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(datasets::SmallWinogradConvolutionLayer5x1Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY,
combine(combine(combine(datasets::LargeWinogradConvolutionLayer5x1Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_1xN_f32);
}
TEST_SUITE_END() // Conv5x1
TEST_SUITE(Conv7x1)
FIXTURE_DATA_TEST_CASE(RunSmall, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(datasets::SmallWinogradConvolutionLayer7x1Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY,
combine(combine(combine(datasets::LargeWinogradConvolutionLayer7x1Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_1xN_f32);
}
TEST_SUITE_END() // Conv7x1
TEST_SUITE(Conv1x7)
FIXTURE_DATA_TEST_CASE(RunSmall, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(datasets::SmallWinogradConvolutionLayer1x7Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY,
combine(combine(combine(datasets::LargeWinogradConvolutionLayer7x1Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_1xN_f32);
}
TEST_SUITE_END() // Conv1x7
TEST_SUITE(Conv3x3)
FIXTURE_DATA_TEST_CASE(RunSmall, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(datasets::SmallWinogradConvolutionLayer3x3Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY,
combine(combine(combine(datasets::LargeWinogradConvolutionLayer3x3Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
// floating point arithmetic the Winograd results will not be exactly the same as direct convolution, especially for big shapes
validate(Accessor(_target), _reference, rel_tolerance_winograd_3x3_f32, 0.f, float(abs_tolerance_f32));
}
TEST_SUITE_END() // Conv3x3
TEST_SUITE(Conv5x5)
FIXTURE_DATA_TEST_CASE(RunSmall, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(datasets::SmallWinogradConvolutionLayer5x5Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
FIXTURE_DATA_TEST_CASE(RunLarge, NEWinogradConvolutionLayerFixture<float>, framework::DatasetMode::NIGHTLY,
combine(combine(combine(datasets::LargeWinogradConvolutionLayer5x5Dataset(),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
TEST_SUITE_END() // Conv5x5
FIXTURE_DATA_TEST_CASE(RunSmallNoBias, NEWinogradConvolutionLayerNoBiasFixture<float>, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(framework::dataset::concat(datasets::SmallWinogradConvolutionLayer3x3Dataset(),
datasets::SmallWinogradConvolutionLayer5x5Dataset()),
framework::dataset::make("DataType", { DataType::F32 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, abs_tolerance_f32);
}
TEST_SUITE_END() // FP32
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_SUITE(FP16)
using CLWinogradConvolutionLayerFastMathFixture16 = WinogradConvolutionLayerFastMathValidationFixture<Tensor, Accessor, NEWinogradConvolutionLayer, half, float>;
TEST_SUITE(Conv3x3)
FIXTURE_DATA_TEST_CASE(RunSmall, CLWinogradConvolutionLayerFastMathFixture16, framework::DatasetMode::PRECOMMIT,
combine(combine(combine(datasets::SmallWinogradConvolutionLayer3x3Dataset(),
framework::dataset::make("DataType", { DataType::F16 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_convolution_layer_f16, tolerance_num_f16);
}
FIXTURE_DATA_TEST_CASE(RunLarge, CLWinogradConvolutionLayerFastMathFixture16, framework::DatasetMode::NIGHTLY,
combine(combine(combine(datasets::LargeWinogradConvolutionLayer3x3Dataset(),
framework::dataset::make("DataType", { DataType::F16 })),
ActivationFunctionsDataset),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_convolution_layer_f16, tolerance_num_f16);
}
TEST_SUITE_END() // Conv3x3
TEST_SUITE_END() // FP16
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
TEST_SUITE_END() // WinogradLayer
TEST_SUITE(GEMMConvolutionLayer)
template <typename T>
using NEGEMMConvolutionLayerFixture = ConvolutionValidationFixture<Tensor, Accessor, NEConvolutionLayer, T>;
template <typename T>
using NEGEMMConvolutionLayerMixedDataLayoutFixture = ConvolutionValidationFixture<Tensor, Accessor, NEConvolutionLayer, T, true>;
/** Test case for memory injection in @ref cpu::CpuGemmConvolution.
*
* Configure the operator once and inject memory at run-time in multiple executions.
*
* Checks performed in order:
* - Both runs compute the same output
*/
TEST_CASE(MemoryInjection, framework::DatasetMode::ALL)
{
auto conv = std::make_unique<cpu::CpuGemmConvolution>();
const auto src_info = TensorInfo(TensorShape(1U, 5U, 2U), 1, DataType::F32, DataLayout::NCHW);
const auto weight_info = TensorInfo(TensorShape(1U, 3U, 2U, 3U), 1, DataType::F32, DataLayout::NCHW);
const auto bias_info = TensorInfo(TensorShape(3U), 1, DataType::F32, DataLayout::NCHW);
auto dst_info = TensorInfo(TensorShape(1U, 7U, 3U), 1, DataType::F32, DataLayout::NCHW);
const auto conv_info = PadStrideInfo(1, 1, 0, 0, 2, 2, DimensionRoundingType::FLOOR);
WeightsInfo weights_info(false, 3U, 3U, 1U);
conv->configure(&src_info, &weight_info, &bias_info, &dst_info, conv_info, weights_info);
// tensors are newly created every call of this lambda function
auto src = create_tensor<Tensor>(src_info);
auto weight = create_tensor<Tensor>(weight_info);
auto bias = create_tensor<Tensor>(bias_info);
src.allocator()->allocate();
weight.allocator()->allocate();
bias.allocator()->allocate();
ITensorPack run_pack{ { TensorType::ACL_SRC_0, &src }, { TensorType::ACL_SRC_1, &weight }, { TensorType::ACL_SRC_2, &bias } };
ITensorPack prep_pack{ { TensorType::ACL_SRC_1, &weight }, { TensorType::ACL_SRC_2, &bias } };
auto mg = MemoryGroup{};
auto ws = manage_workspace<Tensor>(conv->workspace(), mg, run_pack, prep_pack);
auto run_conv = [&]() -> Tensor
{
auto dst = create_tensor<Tensor>(dst_info);
dst.allocator()->allocate();
run_pack.add_tensor(TensorType::ACL_DST, &dst);
library->fill_tensor_value(Accessor(src), 1.f);
library->fill_tensor_value(Accessor(weight), 2.f);
library->fill_tensor_value(Accessor(bias), 3.f);
// This operator is configured once and captured by this lambda.
conv->prepare(prep_pack);
conv->run(run_pack);
return dst;
};
auto result_0 = run_conv();
auto result_1 = run_conv();
for(size_t i = 0; i < result_0.info()->tensor_shape().total_size(); ++i)
{
ARM_COMPUTE_EXPECT(((float *)result_0.buffer())[i] == ((float *)result_1.buffer())[i], framework::LogLevel::ERRORS);
}
}
/** Test case for memory injection in @ref NEGEMMConvolutionLayer.
*
* Make sure @ref NEGEMMConvolutionLayer still works through injecting the memory at configure time using the old API.
*
* Checks performed in order:
* - Both runs compute the same output
*/
TEST_CASE(MultipleExecutionWithConfigure, framework::DatasetMode::ALL)
{
auto conv = std::make_unique<NEGEMMConvolutionLayer>();
const auto src_info = TensorInfo(TensorShape(1U, 5U, 2U), 1, DataType::F32, DataLayout::NCHW);
const auto weight_info = TensorInfo(TensorShape(1U, 3U, 2U, 3U), 1, DataType::F32, DataLayout::NCHW);
const auto bias_info = TensorInfo(TensorShape(3U), 1, DataType::F32, DataLayout::NCHW);
auto dst_info = TensorInfo(TensorShape(1U, 7U, 3U), 1, DataType::F32, DataLayout::NCHW);
const auto conv_info = PadStrideInfo(1, 1, 0, 0, 2, 2, DimensionRoundingType::FLOOR);
WeightsInfo weights_info(false, 3U, 3U, 1U);
auto run_conv = [&]()
{
auto src = create_tensor<Tensor>(src_info);
auto weight = create_tensor<Tensor>(weight_info);
auto bias = create_tensor<Tensor>(bias_info);
auto dst = create_tensor<Tensor>(dst_info);
conv->configure(&src, &weight, &bias, &dst, conv_info, weights_info);
src.allocator()->allocate();
weight.allocator()->allocate();
bias.allocator()->allocate();
dst.allocator()->allocate();
library->fill_tensor_value(Accessor(src), 1.f);
library->fill_tensor_value(Accessor(weight), 2.f);
library->fill_tensor_value(Accessor(bias), 3.f);
conv->run();
return dst;
};
auto result_0 = run_conv();
auto result_1 = run_conv();
for(size_t i = 0; i < result_0.info()->tensor_shape().total_size(); ++i)
{
ARM_COMPUTE_EXPECT(((float *)result_0.buffer())[i] == ((float *)result_1.buffer())[i], framework::LogLevel::ERRORS);
}
}
TEST_SUITE(Float)
#if defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16)
TEST_SUITE(BFLOAT16)
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMConvolutionLayerFixture<float>, framework::DatasetMode::ALL, combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::BFLOAT16)),
framework::dataset::make("DataLayout", { DataLayout::NHWC })),
ActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, rel_tolerance_f32, 0.f, float(abs_tolerance_f32));
}
TEST_SUITE_END() // BFLOAT16
#endif /* defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16) */
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_SUITE(FP16)
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMConvolutionLayerFixture<half>, framework::DatasetMode::ALL, combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::F16)),
framework::dataset::make("DataLayout", { DataLayout::NCHW })),
ActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, rel_tolerance_f16, tolerance_num, abs_tolerance_f16);
}
TEST_SUITE_END() // FP16
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
TEST_SUITE(FP32)
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMConvolutionLayerFixture<float>, framework::DatasetMode::ALL, combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
ActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, rel_tolerance_f32, 0.f, float(abs_tolerance_f32));
}
FIXTURE_DATA_TEST_CASE(RunMixedDataLayout, NEGEMMConvolutionLayerMixedDataLayoutFixture<float>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(
framework::dataset::make("Input", TensorShape(23U, 27U, 5U)),
framework::dataset::make("Weights", TensorShape(3U, 3U, 5U, 2U))),
framework::dataset::make("Bias", TensorShape(2U))),
framework::dataset::make("Output", TensorShape(11U, 25U, 2U))),
framework::dataset::make("PadStrideInfo", PadStrideInfo(2, 1, 0, 0))),
framework::dataset::make("Dilation", Size2D(1, 1))),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
ActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, rel_tolerance_f32, 0.f, float(abs_tolerance_f32));
}
TEST_SUITE_END() // FP32
TEST_SUITE_END() // Float
template <typename T>
using NEGEMMConvolutionLayerQuantizedFixture = ConvolutionValidationQuantizedFixture<Tensor, Accessor, NEConvolutionLayer, T>;
template <typename T>
using NEGEMMConvolutionLayerQuantizedMixedDataLayoutFixture = ConvolutionValidationQuantizedFixture<Tensor, Accessor, NEConvolutionLayer, T, true>;
template <typename T>
using NEGEMMConvolutionLayerQuantizedPerChannelFixture = ConvolutionValidationQuantizedPerChannelFixture<Tensor, Accessor, NEConvolutionLayer, T, int8_t>;
const auto QuantizedActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
{
ActivationLayerInfo(),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)
});
TEST_SUITE(Quantized)
TEST_SUITE(QASYMM8)
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMConvolutionLayerQuantizedFixture<uint8_t>, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::QASYMM8)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
QuantizedActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
FIXTURE_DATA_TEST_CASE(RunMixedDataLayout, NEGEMMConvolutionLayerQuantizedFixture<uint8_t>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
framework::dataset::make("Input", TensorShape(23U, 27U, 5U)),
framework::dataset::make("Weights", TensorShape(3U, 3U, 5U, 2U))),
framework::dataset::make("Bias", TensorShape(2U))),
framework::dataset::make("Output", TensorShape(11U, 25U, 2U))),
framework::dataset::make("PadStrideInfo", PadStrideInfo(2, 1, 0, 0))),
framework::dataset::make("Dilation", Size2D(1, 1))),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::QASYMM8)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
QuantizedActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
TEST_SUITE_END() // QASYMM8
TEST_SUITE(QASYMM8_SIGNED)
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMConvolutionLayerQuantizedFixture<int8_t>, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(0.01f, -10) })),
QuantizedActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
FIXTURE_DATA_TEST_CASE(RunMixedDataLayout, NEGEMMConvolutionLayerQuantizedFixture<int8_t>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(combine(combine(combine(combine(
framework::dataset::make("Input", TensorShape(23U, 27U, 5U)),
framework::dataset::make("Weights", TensorShape(3U, 3U, 5U, 2U))),
framework::dataset::make("Bias", TensorShape(2U))),
framework::dataset::make("Output", TensorShape(11U, 25U, 2U))),
framework::dataset::make("PadStrideInfo", PadStrideInfo(2, 1, 0, 0))),
framework::dataset::make("Dilation", Size2D(1, 1))),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
QuantizedActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
TEST_SUITE_END() // QASYMM8_SIGNED
TEST_SUITE(QSYMM8_PER_CHANNEL)
FIXTURE_DATA_TEST_CASE(RunSmall, NEGEMMConvolutionLayerQuantizedPerChannelFixture<uint8_t>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", { DataType::QASYMM8 })),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
QuantizationData),
QuantizedActivationFunctionsDataset),
framework::dataset::make("WeightsDataType", { DataType::QSYMM8_PER_CHANNEL })))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
FIXTURE_DATA_TEST_CASE(RunSmallSigned, NEGEMMConvolutionLayerQuantizedPerChannelFixture<int8_t>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", { DataType::QASYMM8_SIGNED })),
framework::dataset::make("DataLayout", { DataLayout::NCHW, DataLayout::NHWC })),
QuantizationData),
QuantizedActivationFunctionsDataset),
framework::dataset::make("WeightsDataType", { DataType::QSYMM8_PER_CHANNEL })))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
TEST_SUITE_END() // QSYMM8_PER_CHANNEL
TEST_SUITE_END() // Quantized
TEST_SUITE_END() // GEMMConvolutionLayer
TEST_SUITE(DirectGEMMConv2d)
template <typename T>
using NEDirectGEMMConv2dLayerFixture = ConvolutionValidationFixture<Tensor, Accessor, NEGEMMConv2d, T>;
/** Test case for memory injection in @ref cpu::CpuGemmDirectConv2d.
*
* Configure the operator once and inject memory at run-time in multiple executions.
*
* Checks performed in order:
* - Both runs compute the same output
*/
TEST_CASE(MemoryInjection, framework::DatasetMode::ALL)
{
auto conv = std::make_unique<cpu::CpuGemmDirectConv2d>();
const auto src_info = TensorInfo(TensorShape(1U, 5U, 2U), 1, DataType::F32, DataLayout::NHWC);
const auto weight_info = TensorInfo(TensorShape(1U, 3U, 2U, 3U), 1, DataType::F32, DataLayout::NHWC);
const auto bias_info = TensorInfo(TensorShape(3U), 1, DataType::F32, DataLayout::NHWC);
auto dst_info = TensorInfo(TensorShape(1U, 7U, 3U), 1, DataType::F32, DataLayout::NHWC);
const auto conv_info = Conv2dInfo{};
conv->configure(&src_info, &weight_info, &bias_info, &dst_info, conv_info);
// tensors are newly created every call of this lambda function
auto src = create_tensor<Tensor>(src_info);
auto weight = create_tensor<Tensor>(weight_info);
auto bias = create_tensor<Tensor>(bias_info);
src.allocator()->allocate();
weight.allocator()->allocate();
bias.allocator()->allocate();
ITensorPack run_pack{ { TensorType::ACL_SRC_0, &src }, { TensorType::ACL_SRC_1, &weight }, { TensorType::ACL_SRC_2, &bias } };
ITensorPack prep_pack{ { TensorType::ACL_SRC_1, &weight }, { TensorType::ACL_SRC_2, &bias } };
auto mg = MemoryGroup{};
auto ws = manage_workspace<Tensor>(conv->workspace(), mg, run_pack, prep_pack);
auto run_conv = [&]() -> Tensor
{
auto dst = create_tensor<Tensor>(dst_info);
dst.allocator()->allocate();
run_pack.add_tensor(TensorType::ACL_DST, &dst);
library->fill_tensor_value(Accessor(src), 1.f);
library->fill_tensor_value(Accessor(weight), 2.f);
library->fill_tensor_value(Accessor(bias), 3.f);
// This operator is configured once and captured by this lambda.
conv->prepare(prep_pack);
conv->run(run_pack);
return dst;
};
auto result_0 = run_conv();
auto result_1 = run_conv();
for(size_t i = 0; i < result_0.info()->tensor_shape().total_size(); ++i)
{
ARM_COMPUTE_EXPECT(((float *)result_0.buffer())[i] == ((float *)result_1.buffer())[i], framework::LogLevel::ERRORS);
}
}
/** Test case for memory injection in @ref NEGEMMConv2d.
*
* Make sure @ref NEGEMMConv2d still works through injecting the memory at configure time using the old API.
*
* Checks performed in order:
* - Both runs compute the same output
*/
TEST_CASE(MultipleExecutionWithConfigure, framework::DatasetMode::ALL)
{
auto conv = std::make_unique<NEGEMMConv2d>();
const auto src_info = TensorInfo(TensorShape(1U, 5U, 2U), 1, DataType::F32, DataLayout::NHWC);
const auto weight_info = TensorInfo(TensorShape(1U, 3U, 2U, 3U), 1, DataType::F32, DataLayout::NHWC);
const auto bias_info = TensorInfo(TensorShape(3U), 1, DataType::F32, DataLayout::NHWC);
auto dst_info = TensorInfo(TensorShape(1U, 7U, 3U), 1, DataType::F32, DataLayout::NHWC);
const auto conv_info = Conv2dInfo{};
auto run_conv = [&]()
{
auto src = create_tensor<Tensor>(src_info);
auto weight = create_tensor<Tensor>(weight_info);
auto bias = create_tensor<Tensor>(bias_info);
auto dst = create_tensor<Tensor>(dst_info);
conv->configure(&src, &weight, &bias, &dst, conv_info);
src.allocator()->allocate();
weight.allocator()->allocate();
bias.allocator()->allocate();
dst.allocator()->allocate();
library->fill_tensor_value(Accessor(src), 1.f);
library->fill_tensor_value(Accessor(weight), 2.f);
library->fill_tensor_value(Accessor(bias), 3.f);
conv->run();
return dst;
};
auto result_0 = run_conv();
auto result_1 = run_conv();
for(size_t i = 0; i < result_0.info()->tensor_shape().total_size(); ++i)
{
ARM_COMPUTE_EXPECT(((float *)result_0.buffer())[i] == ((float *)result_1.buffer())[i], framework::LogLevel::ERRORS);
}
}
TEST_SUITE(Float)
TEST_SUITE(FP32)
FIXTURE_DATA_TEST_CASE(RunSmall, NEDirectGEMMConv2dLayerFixture<float>, framework::DatasetMode::ALL, combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::F32)),
framework::dataset::make("DataLayout", { DataLayout::NHWC })),
ActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, rel_tolerance_f32, 0.f, float(abs_tolerance_f32));
}
TEST_SUITE_END() // FP32
TEST_SUITE_END() // Float
#ifdef __aarch64__
template <typename T>
using NEDirectGEMMConv2dLayerQuantizedFixture = ConvolutionValidationQuantizedFixture<Tensor, Accessor, NEGEMMConv2d, T>;
template <typename T>
using NEDirectGEMMConv2dLayerQuantizedPerChannelFixture = ConvolutionValidationQuantizedPerChannelFixture<Tensor, Accessor, NEGEMMConv2d, T, int8_t>;
const auto QuantizedActivationFunctionsDataset = framework::dataset::make("ActivationInfo",
{
ActivationLayerInfo(),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU),
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, 6.f)
});
TEST_SUITE(Quantized)
TEST_SUITE(QASYMM8)
FIXTURE_DATA_TEST_CASE(RunSmall, NEDirectGEMMConv2dLayerQuantizedFixture<uint8_t>, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::QASYMM8)),
framework::dataset::make("DataLayout", { DataLayout::NHWC })),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(2.f / 255.f, 10) })),
QuantizedActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
TEST_SUITE_END() // QASYMM8
TEST_SUITE(QASYMM8_SIGNED)
FIXTURE_DATA_TEST_CASE(RunSmall, NEDirectGEMMConv2dLayerQuantizedFixture<int8_t>, framework::DatasetMode::ALL, combine(combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", DataType::QASYMM8_SIGNED)),
framework::dataset::make("DataLayout", { DataLayout::NHWC })),
framework::dataset::make("QuantizationInfo", { QuantizationInfo(0.01f, -10) })),
QuantizedActivationFunctionsDataset))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
TEST_SUITE_END() // QASYMM8_SIGNED
TEST_SUITE(QSYMM8_PER_CHANNEL)
FIXTURE_DATA_TEST_CASE(RunSmallSigned, NEDirectGEMMConv2dLayerQuantizedPerChannelFixture<int8_t>, framework::DatasetMode::ALL,
combine(combine(combine(combine(combine(combine(datasets::SmallConvolutionLayerDataset(),
framework::dataset::make("ReshapeWeights", { true })),
framework::dataset::make("DataType", { DataType::QASYMM8_SIGNED })),
framework::dataset::make("DataLayout", { DataLayout::NHWC })),
QuantizationData),
QuantizedActivationFunctionsDataset),
framework::dataset::make("WeightsDataType", { DataType::QSYMM8_PER_CHANNEL })))
{
// Validate output
validate(Accessor(_target), _reference, tolerance_qasymm8);
}
TEST_SUITE_END() // QSYMM8_PER_CHANNEL
TEST_SUITE_END() // Quantized
#endif // __aarch64__
TEST_SUITE_END() // DirectGEMMConv2d
TEST_SUITE_END() // Neon
} // namespace validation
} // namespace test
} // namespace arm_compute