blob: 6c1e0fb1de21b0b26cb5e0b5cfc3e173f63881b1 [file] [log] [blame]
/*
* Copyright (c) 2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "ClTemplateElementwiseBinary.h"
#include "src/dynamic_fusion/sketch/gpu/GpuKernelComponentGroup.h"
#include "src/dynamic_fusion/sketch/gpu/components/cl/ClComponentElementwiseBinary.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "src/core/helpers/WindowHelpers.h"
#include "support/StringSupport.h"
namespace arm_compute
{
namespace experimental
{
namespace dynamic_fusion
{
constexpr unsigned int vector_size_byte_opencl = 16;
ClTemplateElementwiseBinary::ClTemplateElementwiseBinary(ComponentId id,
const ArgumentPack<ITensorInfo> &tensors,
const Attributes &attributes)
: IGpuTemplateComponentWriter{ id, tensors },
_lhs{},
_rhs{},
_dst{},
_attributes{ attributes }
{
_lhs = this->tensors().get_const_tensor(TensorType::ACL_SRC_0);
_rhs = this->tensors().get_const_tensor(TensorType::ACL_SRC_1);
_dst = this->tensors().get_const_tensor(TensorType::ACL_DST_0);
ARM_COMPUTE_ERROR_ON_NULLPTR(_lhs, _rhs, _dst);
}
std::string ClTemplateElementwiseBinary::get_name() const
{
return "elementwise_binary";
}
std::string ClTemplateElementwiseBinary::get_component_code(const ComponentGroup &comp_group) const
{
ARM_COMPUTE_UNUSED(comp_group);
std::string code;
const bool is_broadcast = _lhs->tensor_shape() != _rhs->tensor_shape();
const bool is_root = (comp_group.get_root_component()->id() == this->id());
if(is_root)
{
code =
R"_(
//------------------ START KERNEL {{meta_kernel_id}} ELTWISE_OP ---------------------
)_"
// IN_0(LHS) {{lhs}}
// IN_1(RHS) {{rhs}}
// OUT(dst, accum) {{dst}}
// dst = lhs + rhs (mix-precision, broadcast, boundary aware)
R"_(
TILE({{DATA_TYPE}}, M0, N0, {{dst}});
TILE(uint, M0, 1, g_dst_indirect_y);
{
TILE({{DATA_TYPE}}, M0, N0, lhs_tile);
TILE({{DATA_TYPE}}, M0, N0, rhs_tile);
)_"
// Assuming un-collapsed window
R"_(
{{lhs}}_offset_first_element_in_bytes += g_ind_2 * {{lhs}}_stride_z;
{{rhs}}_offset_first_element_in_bytes += g_ind_2 * {{rhs}}_stride_z;
T_LOAD({{DATA_TYPE}}, M0, N0, BUFFER, {{lhs}}, g_ind_0, g_ind_1, 1, {{lhs}}_stride_y, lhs_tile);
T_LOAD({{DATA_TYPE}}, {{rhs_m0}}, {{rhs_n0}}, BUFFER, {{rhs}}, {{rhs_start_ind_0}}, {{rhs_start_ind_1}}, 1, {{rhs}}_stride_y, rhs_tile);
)_";
if(is_broadcast)
{
code +=
R"_(
T_ELTWISE_BROADCAST_{{ELTWISE_OP}}_X({{DATA_TYPE}}, M0, N0, lhs_tile, rhs_tile, {{dst}});
)_";
}
else
{
code +=
R"_(
T_ELTWISE_{{ELTWISE_OP}}({{DATA_TYPE}}, M0, N0, lhs_tile, rhs_tile, {{dst}});
)_";
}
code +=
// Calculate the destination indirect Y
R"_(
LOOP_UNROLLING(int, i, 0, 1, M0,
{
g_dst_indirect_y[i].v = (uint)min(g_ind_1 + i, (int)({{out}}_w * {{out}}_h) - 1);
g_dst_indirect_y[i].v += g_ind_2 * (int)({{out}}_w * {{out}}_h);
})
}
//------------------ END KERNEL {{meta_kernel_id}} ELTWISE_OP ---------------------
)_";
}
else // non-root
{
code =
R"_(
//------------------ START KERNEL {{meta_kernel_id}} ELTWISE_OP ---------------------
)_"
// IN_0/Out(Accumulator) {{acc}}
// IN_1(Operand) {{operand}}
// acc = operand + acc (mix-precision, broadcast, boundary aware)
R"_(
{
TILE(DATA_TYPE, M0, N0, operand_tile);
T_LOAD({{DATA_TYPE}}, {{rhs_m0}}, {{rhs_n0}}, BUFFER, {{operand}}, {{rhs_start_ind_0}}, {{rhs_start_ind_1}}, 1, {{operand}}_stride_y, operand_tile);
)_";
if(is_broadcast)
{
code +=
R"_(
T_ELTWISE_BROADCAST_{{ELTWISE_OP}}_X({{DATA_TYPE}}, M0, N0, {{acc}}, operand_tile, {{acc}});
)_";
}
else
{
code +=
R"_(
T_ELTWISE_{{ELTWISE_OP}}({{DATA_TYPE}}, M0, N0, {{acc}}, operand_tile, {{acc}});
)_";
}
code +=
R"_(
}
//------------------ END KERNEL {{meta_kernel_id}} ELTWISE_OP ---------------------
)_";
}
return code;
}
void ClTemplateElementwiseBinary::declare_variables(GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const
{
vtable.declare_variable(
_lhs,
GpuKernelArgumentInfo(common_tensor_type),
comp_group.is_intermediate_tensor(_lhs),
"lhs");
vtable.declare_variable(
_rhs,
GpuKernelArgumentInfo(common_tensor_type),
comp_group.is_intermediate_tensor(_rhs),
"rhs");
vtable.declare_variable(
_dst,
GpuKernelArgumentInfo(common_tensor_type),
comp_group.is_intermediate_tensor(_dst),
"dst");
}
TagLUT ClTemplateElementwiseBinary::get_tag_lut(const GpuKernelVariableTable &vtable, const ComponentGroup &comp_group) const
{
TagLUT lut{};
const ITensorInfo *accumulator = _lhs;
const ITensorInfo *operand = _rhs;
// Local build options
lut["meta_kernel_id"] = id();
lut["DATA_TYPE"] = get_cl_type_from_data_type(_lhs->data_type());
// Arguments and global shared variables
const bool is_root = (comp_group.get_root_component()->id() == this->id());
if(is_root)
{
lut["lhs"] = vtable.get_variable(_lhs);
lut["rhs"] = vtable.get_variable(_rhs);
lut["dst"] = vtable.get_variable(_dst);
lut["out"] = vtable.get_variable(comp_group.get_dst_tensors().front());
}
else
{
// Determine which tensor is the accumulator
if(comp_group.is_intermediate_tensor(_lhs))
{
accumulator = _lhs;
operand = _rhs;
}
else if(comp_group.is_intermediate_tensor(_rhs))
{
accumulator = _rhs;
operand = _lhs;
}
else
{
ARM_COMPUTE_ERROR("Invalid elementwise component linking");
}
lut["acc"] = vtable.get_variable(accumulator);
lut["operand"] = vtable.get_variable(operand);
}
switch(_attributes.operation())
{
case Attributes::ElementwiseOp::ADD:
lut["ELTWISE_OP"] = "ADD";
break;
default:
ARM_COMPUTE_ERROR("Arithmetic Operation not supported");
}
ARM_COMPUTE_ERROR_ON_MSG(detail::have_different_dimensions(accumulator->tensor_shape(), _dst->tensor_shape(), 0), "Only the operand can be broadcast to match the accumulator's shape");
const bool is_broadcast = (operand->tensor_shape() != _dst->tensor_shape());
// Set broadcast parameters
// PRE: All tensors are broadcast-compatible
if(is_broadcast)
{
// Note that n0 maps to input tensor dimension 0, m0 maps to input dimensions 1 and 2 because of our collapse strategy
if(operand->dimension(0) == 1U && operand->dimension(1) == 1U && operand->dimension(2) == 1U) // Broadcast in X, Y, Z: collapsed rhs win [M0xN0] = [1x1]
{
lut["rhs_m0"] = "1";
lut["rhs_n0"] = "1";
lut["rhs_start_ind_1"] = "0";
lut["rhs_start_ind_0"] = "0";
}
else if(operand->dimension(1) == 1U && operand->dimension(2) == 1U) // Broadcast in Y and Z: collapsed rhs win [M0xN0] = [1xN]
{
lut["rhs_m0"] = "1";
lut["rhs_n0"] = "N0";
lut["rhs_start_ind_1"] = "0";
lut["rhs_start_ind_0"] = "g_ind_0";
}
else
{
ARM_COMPUTE_ERROR("Only support rhs broadcasting in all X, Y, Z dimensions, or just in Y and Z dimensions");
}
}
else
{
lut["rhs_m0"] = "M0";
lut["rhs_n0"] = "N0";
lut["rhs_start_ind_1"] = "g_ind_1";
lut["rhs_start_ind_0"] = "g_ind_0";
}
return lut;
}
CLBuildOptions ClTemplateElementwiseBinary::get_build_options(const ComponentGroup &comp_group) const
{
CLBuildOptions build_opts{};
/// NOTE: For now tile sizes (n0, m0) are set by the execution window. This may change in the future
const auto root_window = comp_group.get_root_component()->template_writer()->get_window();
const unsigned int n0 = root_window.x().step();
const unsigned int m0 = root_window.y().step();
const unsigned int partial_store_n0 = _dst->dimension(0) % n0;
build_opts.add_option("-DM0=" + support::cpp11::to_string(m0));
build_opts.add_option("-DN0=" + support::cpp11::to_string(n0));
build_opts.add_option("-DDATA_TYPE=" + get_cl_type_from_data_type(_lhs->data_type()));
build_opts.add_option("-DPARTIAL_N0=" + support::cpp11::to_string(partial_store_n0));
return build_opts;
}
std::string ClTemplateElementwiseBinary::get_config_id() const
{
std::string config_id{};
config_id += lower_string(string_from_data_type(_dst->data_type()));
config_id += "_";
config_id += support::cpp11::to_string(_dst->dimension(0));
config_id += "_";
config_id += support::cpp11::to_string(_dst->dimension(1));
config_id += "_";
config_id += lower_string(string_from_data_layout(_dst->data_layout()));
return config_id;
}
std::set<std::string> ClTemplateElementwiseBinary::get_headers_list() const
{
return std::set<std::string>{ "helpers.h", "tile_helpers.h" };
}
Window ClTemplateElementwiseBinary::get_window() const
{
ARM_COMPUTE_ERROR_ON_MSG(_dst->tensor_shape().total_size() == 0U, "Destination tensor is not initialized");
TensorShape output_shape = _dst->tensor_shape();
// Collapse Dim 1 (W) and Dim 2 (H) together, leave Dim 0 (C) and upper dimensions unchanged
// This is in line with the collapsing convention used by operators like Conv2d
output_shape.collapse(2U, 1U);
const unsigned int num_elems_processed_per_iteration = adjust_vec_size(vector_size_byte_opencl / _dst->element_size(), _dst->dimension(0));
Window win = calculate_max_window(output_shape, Steps(num_elems_processed_per_iteration));
return win;
}
} // namespace dynamic_fusion
} // namespace experimental
} // namespace arm_compute